Cysteines in CH1 underlie retention of unassembled Ig heavy chains.

J Biol Chem

Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

Published: April 2005

AI Article Synopsis

Article Abstract

Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500161200DOI Listing

Publication Analysis

Top Keywords

ch1 cysteines
12
heavy chains
8
three ch1
8
folding assembly
8
assembly secretion
8
formation intradomain
8
light chain
8
secretion
6
cysteines
5
cysteines ch1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!