Background: Early adverse experiences represent risk factors for the development of anxiety and mood disorders. Studies in nonhuman primates have largely focused on the impact of protracted maternal and social deprivation, but such intense manipulations also result in severe social and emotional deficits very difficult to remediate. This study attempts to model more subtle developmental perturbations that may increase the vulnerability for anxiety/mood disorders but lack the severe deficits associated with motherless rearing.

Methods: We investigated the consequences of repeated maternal separations between 3 to 6 months of age on rhesus monkeys' hypothalamic-pituitary-adrenal (HPA) axis function and acoustic startle reactivity.

Results: Repetitive maternal separation led to increased cortisol reactivity to the separation protocol in female infants and alterations in mother-infant interaction. It also resulted in a flattened diurnal rhythm of cortisol secretion and increased acoustic startle reactivity at later ages.

Conclusions: Macaques with adverse rearing exhibited short-term and long-term alterations in HPA axis function and increased acoustic startle response comparable with changes associated with mood/anxiety disorders. The magnitude of HPA axis reactivity to the separations and the alterations in mother-infant relationship detected during the separation protocol predicted some of the alterations in HPA axis and emotionality exhibited later in life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2004.11.032DOI Listing

Publication Analysis

Top Keywords

acoustic startle
16
hpa axis
16
startle response
8
nonhuman primates
8
adverse rearing
8
axis function
8
separation protocol
8
alterations mother-infant
8
increased acoustic
8
alterations hpa
8

Similar Publications

Many animals communicate using call and response signals, but the evolutionary origins of this type of communication are largely unknown. In most cricket species, males sing and females walk or fly to calling males. In the tribe Lebinthini, however, males produce calls that trigger a vibrational reply from females, and males use the substrate vibrations to find the responding female.

View Article and Find Full Text PDF

Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.

View Article and Find Full Text PDF

Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.

View Article and Find Full Text PDF

Purpose: Metabolic dysfunction-associated steatohepatitis (MASH) is a prevalent disease caused by high fat and high cholesterol intake, which leads to systemic deterioration. The aim of this research is to conduct a psychobiological exploration of MASH in adult male rats.

Methods: Subjects who were administered a high-fat and high-cholesterol diet for 14 weeks.

View Article and Find Full Text PDF

Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!