Objective: The present study is designed to further elucidate the molecular genetic basis of migraine with and without aura.
Background: Migraine is a common disease of as yet unknown etiology. Interest in ion channels in migraine has been spurred by molecular genetic findings in familial hemiplegic migraine, since familial hemiplegic migraine type 1 is caused by mutations in the calcium channel gene CACNA1A.
Methods: Given this role of ion channels in migraine, we assessed the potassium channel KCNN3 as a candidate gene for common migraine. We analyzed the highly polymorphic repeat region coding for a poly-glutamine stretch, which constitutes part of the cytoplasmic tail of the channel protein.
Results: We found an excess of the allele coding for 15 poly-glutamines in migraine patients.
Conclusions: The potassium channel KCNN3 may thus be of pathophysiological importance in migraine with and without aura.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1526-4610.2005.05027.x | DOI Listing |
Neuron
January 2025
Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Electronic address:
Writing in Neuron, Zhang et al. identify a subpopulation of glioblastoma cells from patient tumor samples with progenitor-like features that expresses the potassium ion channel KCND2. In mouse and organoid models, these cells enhance neural activity at the glioma-neural interface.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
January 2025
School of Health Santa Casa BH, Belo Horizonte, MG, Brazil.
Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.
Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!