A Pauson-Khand type of conversion of enynes to bicyclic cyclopentenones employing the commercially available Co2(CO)8 and tetramethylthiourea (TMTU) as catalysts is described. This method allows a variety of enynes with diverse functional groups to be cyclized into cyclopentenones of interest. [reaction: see text]
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol047651a | DOI Listing |
Anal Chim Acta
October 2022
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
Infectious diseases caused by viruses have attracted global concern owing to their rapid spread and catastrophic consequences. Therefore, developing fast and reliable on-site virus detection methods is essential for the prevention and treatment of virus-related diseases. In this study, immunoassays on a membrane, combining virus preconcentration with nanoparticle-based signal amplification, were used to realize the rapid and accurate visual detection of viruses.
View Article and Find Full Text PDFBioorg Med Chem
January 2020
Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
SHetA2 (NSC 721689), our lead Flex-Het anti-cancer agent, consists of a thiochroman (Ring A) and a 4-nitrophenyl (Ring B) linked by a thiourea bridge. In this work, several series of new analogs having a tetrahydroquinoline (THQ, Ring A) unit connected by a urea or thiourea linker to a 4-substituted phenyl (Ring B) have been prepared and evaluated relative to SHetA2 in terms of binding affinity with mortalin and inhibition of A2780 ovarian cancer cells. Six of the derivatives equaled or exceeded the efficacy shown by SHetA2.
View Article and Find Full Text PDFEur J Pharmacol
November 2019
Department of Natural Science and Mathematics, Dominican University of California, San Rafael, CA, 94901, USA. Electronic address:
Flexible heteroarotinoids (Flex-Hets) are compounds with promising anti-cancer activities. SHetA2, a first-generation Flex-Het, has been shown to inhibit the growth of cervical, head and neck, kidney, lung, ovarian, prostate, and breast cancers. However, SHetA2's high lipophilicity, limited selectivity, low oral bioavailability, and complicated synthesis has led to the development of second-generation compounds, such as 1-(1-(naphthalen-1-yl)ethyl)-3-(4-nitrophenyl) thiourea or SL-1-09.
View Article and Find Full Text PDFEur J Med Chem
May 2019
Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
A series of Flexible Heteroarotinoid (Flex-Het) analogs was synthesized and their biological activities were evaluated against the A2780 ovarian cancer cell line. The objective of this study was to establish structure-activity relationships (SARs) for new Flex-Het derivatives, which were previously inaccessible due to the limited availability of aryl isothiocyanate precursors. The current work developed a synthesis of isothiocyanate 13 and used it to prepare 14 diverse thiourea analogs of the lead compound SHetA2 (1, NSC-721689) from a range of commercial amines.
View Article and Find Full Text PDFCancer Lett
February 2019
Department of Natural Sciences and Mathematics, Dominican University of California, 50 Acacia Avenue, San Rafael, CA, 94901, USA; College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA, 94594, USA. Electronic address:
SL-1-39 [1-(4-chloro-3-methylphenyl)-3-(4-nitrophenyl)thiourea] is a new flexible heteroarotinoid (Flex-Het) analog derived from the parental compound, SHetA2, previously shown to inhibit cell growth across multiple cancer types. The current study aims to determine growth inhibitory effects of SL-1-39 across the different subtypes of breast cancer cells and delineate its molecular mechanism. Our results demonstrate that while SL-1-39 blocks cell proliferation of all breast cancer subtypes tested, it has the highest efficacy against HER2+ breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!