XMVB: a program for ab initio nonorthogonal valence bond computations.

J Comput Chem

State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, and Center for Theoretical Chemistry, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

Published: April 2005

An ab initio nonorthogonal valence bond program, called XMVB, is described in this article. The XMVB package uses Heitler-London-Slater-Pauling (HLSP) functions as state functions, and calculations can be performed with either all independent state functions for a molecule or preferably a few selected important state functions. Both our proposed paired-permanent-determinant approach and conventional Slater determinant expansion algorithm are implemented for the evaluation of the Hamiltonian and overlap matrix elements among VB functions. XMVB contains the capabilities of valence bond self-consistent field (VBSCF), breathing orbital valence bond (BOVB), and valence bond configuration interaction (VBCI) computations. The VB orbitals, used to construct VB functions, can be defined flexibly in the calculations depending on particular applications and focused problems, and they may be strictly localized, delocalized, or bonded-distorted (semidelocalized). The parallel version of XMVB based on MPI (Message Passing Interface) is also available.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.20187DOI Listing

Publication Analysis

Top Keywords

valence bond
20
state functions
12
initio nonorthogonal
8
nonorthogonal valence
8
functions
6
xmvb
5
valence
5
bond
5
xmvb program
4
program initio
4

Similar Publications

Fe diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications.

J Colloid Interface Sci

January 2025

Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:

Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.

View Article and Find Full Text PDF

Generative artificial intelligence (AI) models trained on natural protein sequences have been used to design functional enzymes. However, their ability to predict individual reaction steps in enzyme catalysis remains unclear, limiting the potential use of sequence information for enzyme engineering. In this study, we demonstrated that sequence information can predict the rate of the S2 step of a haloalkane dehalogenase using a generative maximum-entropy (MaxEnt) model.

View Article and Find Full Text PDF

Structure of the Se Isomers─An Ab Initio Study.

J Phys Chem A

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.

This study investigates the equilibrium geometries of four different Se isomers using the coupled cluster single and double perturbative (CCSD(T)) method, extrapolating to the complete basis sets. The ground-state geometry of the Se isomer with the C structure (2.8715 Å, 2.

View Article and Find Full Text PDF

Canine-assisted interactions (CAIs) have been explored to offer therapeutic benefits to human participants in various contexts, from addressing cancer-related fatigue to treating post-traumatic stress disorder. Despite their widespread adoption, there are still unresolved questions regarding the outcomes for both humans and animals involved in these interactions. Previous attempts to address these questions have suffered from core methodological weaknesses, especially due to absence of tools for an efficient objective evaluation and lack of focus on the canine perspective.

View Article and Find Full Text PDF

The structures and rotational constants of prototypical monocyclic terpenes and terpenoids have been analyzed by a general computational strategy based on recent Pisa composite schemes (PCS) and vibrational perturbation theory at second order (VPT2). Concerning equilibrium geometries, a one-parameter empirical correction is added to bond lengths obtained by the revDSD-PBEP86 double hybrid functional in conjunction with a slightly modified cc-pVTZ-F12 basis set. The same functional and basis set give accurate harmonic frequencies, whereas the cheaper B3LYP hybrid functional in conjunction with a double-ζ basis set is employed to compute the semidiagonal cubic force constants needed to obtain vibrational corrections to the rotational constants in the framework of the VPT2 model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!