Magmas, is a 13-kDa mitochondrial protein which is ubiquitously expressed in eukaryotic cells. It was identified as a granulocyte-macrophage-colony stimulating factor (GM-CSF) inducible gene in hematopoietic cells and has a key role in the transport of mitochondrial proteins in yeast. Because GM-CSF receptor levels are elevated in prostate cancer, Magmas expression was examined in normal and neoplastic tissue. Magmas protein levels were barely detectable in non-neoplastic prostate glands. Increased amounts were observed in some samples of intraepithelial neoplasia. Approximately one half of the adenocarcinoma samples examined had weak Magmas expression, while the remainder had intermediate to high levels. The increased Magmas observed in malignant tissue was a result of higher protein expression and not from changes in mitochondrial content. Interestingly, in some patients, the normal prostate tissue had more Magmas message than the malignant portion. The results indicated that Magmas expression in prostate cancer is heterogeneous and independent of clinical stage and Gleason score. Further studies are needed to determine if Magmas expression has prognostic significance in prostate cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10735-004-3840-8 | DOI Listing |
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging.
View Article and Find Full Text PDFAtheroscler Plus
December 2024
College of Acumox and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
Background: Coronary atherosclerosis (CAS) is a complex chronic inflammatory disease with significant genetic and environmental contributions. While genome-wide association studies (GWAS) have pinpointed many risk loci, over 75 % are in non-coding regions, complicating functional analysis and understanding gene-disease mechanisms.
Methods: We conducted a cross-tissue transcriptome-wide association study (TWAS) using data from the GWAS Catalog (16,041 cases, 440,307 controls) and the Genotype-Tissue Expression (GTEx) v8 eQTL dataset.
Biology (Basel)
October 2024
Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
Endometriosis (EMT) is a common gynecological disease with a strong genetic component, while its precise etiology remains elusive. This study aims to integrate transcriptome-wide association study (TWAS), Mendelian randomization (MR), and bioinformatics analyses to reveal novel putatively causal genes and potential mechanisms. We obtained summary-level data of the Genotype-Tissue Expression Project (GTEx), v8 expression quantitative loci (eQTL) data, and the genome-wide association study (GWAS) data of EMT and its subtypes from the R11 release results of the FinnGen consortium for analysis.
View Article and Find Full Text PDFFront Psychiatry
November 2024
Division of Surgery, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: The genetic association between psychiatric disorders and hemorrhoidal disease (HEM) is still not well known. The work aims to investigate their comorbidity at a genetic level.
Methods: Utilizing recent large-scale genome-wide association studies (GWAS), we investigated the genetic overlap at the single nucleotide polymorphism (SNP), gene, and molecular level between depression and HEM, bipolar disorder (BD) and HEM, neuroticism and HEM, as well as schizophrenia (SCZ) and HEM.
Am J Nucl Med Mol Imaging
October 2024
Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University 139 Renmin Middle Road, Changsha 410011, Hunan, PR China.
Observational studies suggest a link between osteoarthritis (OA) and frailty, but the shared genetic architecture and causal relationships remain unclear. We analyzed X-ray and F-FDG PET/CT images in frail and non-frail individuals and conducted genetic correlation analyses using Linkage Disequilibrium Score Regression (LDSC) based on recent Genome-Wide Association Studies (GWAS) for OA and frailty. We identified pleiotropic single-nucleotide polymorphisms (SNPs) through Cross-Phenotype Association (CPASSOC) and Colocalization (COLOC) analyses and investigated genetic overlaps using Multi-marker Analysis of GenoMic Annotation (MAGMA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!