twin, a CCR4 homolog, regulates cyclin poly(A) tail length to permit Drosophila oogenesis.

Development

Developmental Genetics Program, Department of Cell Biology, The Skirball Institute and Howard Hughes Medical Institute, NYU School of Medicine, New York, NY 10016, USA.

Published: March 2005

Cyclins regulate progression through the cell cycle. Control of cyclin levels is essential in Drosophila oogenesis for the four synchronous divisions that generate the 16 cell germ line cyst and for ensuring that one cell in each cyst, the oocyte, is arrested in meiosis, while the remaining fifteen cells become polyploid nurse cells. Changes in cyclin levels could be achieved by regulating transcription, translation or protein stability. The proteasome limits cyclin protein levels in the Drosophila ovary, but the mechanisms regulating RNA turnover or translation remain largely unclear. Here, we report the identification of twin, a homolog of the yeast CCR4 deadenylase. We show that twin is important for the number and synchrony of cyst divisions and oocyte fate. Consistent with the deadenylase activity of CCR4 in yeast, our data suggest that Twin controls germ line cyst development by regulating poly(A) tail lengths of several targets including Cyclin A (CycA) RNA. twin mutants exhibit very low expression of Bag-of-marbles (Bam), a regulator of cyst division, indicating that Twin/Ccr4 activity is necessary for wild-type Bam expression. Lowering the levels of CycA or increasing the levels of Bam suppresses the defects we observe in twin ovaries, implicating CycA and Bam as downstream effectors of Twin. We propose that Twin/Ccr4 functions during early oogenesis to coordinate cyst division, oocyte fate specification and egg chamber maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.01672DOI Listing

Publication Analysis

Top Keywords

polya tail
8
drosophila oogenesis
8
cyclin levels
8
germ cyst
8
oocyte fate
8
cyst division
8
twin
7
cyst
6
cyclin
5
levels
5

Similar Publications

Virtually all mRNAs acquire a poly(A) tail co-transcriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create post-transcriptional gene expression programs, allowing for precise temporal and spatial control.

View Article and Find Full Text PDF

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.

View Article and Find Full Text PDF

The subfamily Mileewinae in China comprises one tribe (Mileewini), four genera (, , , ), and 71 species, yet only 11 mitochondrial genomes have been published. This study aimed to elucidate ambiguous diagnostic traits in traditional taxonomy and examined phylogenetic relationships among genera by sequencing mitochondrial genomes from 16 species. The lengths of the mitochondrial genomes ranged from 14,532 to 15,280 bp, exhibiting an AT content of 77.

View Article and Find Full Text PDF

Gametogenesis is a process in which dysfunctions lead to infertility, a growing health and social problem worldwide. In both spermatogenesis and oogenesis, post-transcriptional gene expression regulation is crucial. Essentially, all mRNAs possess non-templated poly(A) tails, whose composition and dynamics (elongation, shortening, and modifications) determine the fate of mRNA.

View Article and Find Full Text PDF

Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!