The microtubule-binding 63-kDa cytoskeleton-linking membrane protein (CLIMP-63) is an integral membrane protein that links the endoplasmic reticulum (ER) to microtubules. Here, we tested whether this interaction is regulated by phosphorylation. Metabolic labeling with (32)P showed that CLIMP-63 is a phosphoprotein with increased phosphorylation during mitosis. CLIMP-63 of mitotic cells is unable to bind to microtubules in vitro. Mitotic phosphorylation can be prevented by mutation of serines 3, 17, and 19 in the cytoplasmic domain of CLIMP-63. When these residues are mutated to glutamic acid, and hence mimic mitotic phosphorylation, CLIMP-63 does no longer bind to microtubules in vitro. Overexpression of the phospho-mimicking mitotic form of CLIMP-63 in interphase cells leads to a collapse of the ER around the nucleus, leaving the microtubular network intact. The results suggest that CLIMP-63-mediated stable anchoring of the ER to microtubules is required to maintain the spatial distribution of the ER during interphase and that this interaction is abolished by phosphorylation of CLIMP-63 during mitosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1073672 | PMC |
http://dx.doi.org/10.1091/mbc.e04-07-0554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!