Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Purpose: Dose homogeneity is one of the objectives during computer planning of postoperative radiotherapy of the conserved breast. For three-dimensional (3-D) optimization of the dose distribution using serial CT scan images, suitable volumes have to be delineated. The purpose of this study was to develop a computer-generated delineation of a plan optimization volume (POV) and an irradiated volume (IV) and to automate their use in a fast dose homogeneity optimization engine.
Patients And Methods: Simulation was performed according to our standard procedure which involves the positioning of a lead collar around the palpable breast to facilitate the definition of gantry angle, collimator angle and field aperture for tangential wedged photon beams. In a change to the standard procedure an anterolateral radiograph was taken with its axis orthogonal to the central plane of the two tangential half-beams. Images from a serial CT scan were acquired in treatment position, and the geometric data of the three simulated beams were used by a computer program to generate the POV and IV. For each patient, weights of wedged and unwedged beams were optimized by either human heuristics using only the central slice (2-D), the whole set of CT slices (3-D), or by a computer algorithm using the POV, IV and lung volume with constrained matrix inversion (CMI) as optimization method. The resulting dose distributions were compared.
Results: The total planning procedure took, on average, 44 min of which < 7 min were needed for human interactions, compared to about 52 min for the standard planning at Ghent University Hospital, Belgium. The simulation time is increased by 2-3 min. The method provides 3-D information of the dose distribution. Dose homogeneity and minimum dose inside the POV and maximum dose inside the IV were not significantly different for the three optimization techniques.
Conclusion: This automated planning method is capable of replacing the contouring of the clinical target volume as well as the trial-and-error procedure of assigning weights of wedged and unwedged beams by an experienced planner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00066-005-1310-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!