Purpose: Paclitaxel is a highly promising phase-sensitive antitumor drug that could conceivably be improved by extended lower dosing as opposed to intermittent higher dosing. Although intratumoral delivery of paclitaxel to the whole tumor at different loads and rates has already been achieved, determining an optimal release mode of paclitaxel for tumor eradication remains difficult. This study set out to rationally design such an optimal microsphere release mode based on mathematical modeling.
Experimental Design: A computational reaction-diffusion framework was used to model drug release from intratumorally injected microspheres, drug transport and binding in tumor interstitum, and drug clearance by microvasculature and intracellular uptake and binding.
Results: Numerical simulations suggest that interstitial drug concentration is characterized by a fast spatially inhomogeneous rise phase, during which interstitial and intracellular binding sites are saturated, followed by a slow spatially homogeneous phase that is governed by the rate of drug release from microspheres. For zero-order drug release, the slow phase corresponds to a plateau drug concentration that is proportional to the ratio of the rate of blood clearance of drug to the rate of drug release from microspheres. Consequently, increasing the duration of intratumoral drug release extends the duration of cell exposure to the drug but lowers the plateau drug concentration. This tradeoff implies that intratumoral drug release can be designed to optimize tumor cell kill. Synthesizing our modeling predictions with published dose-response data, we propose an optimal protocol for the delivery of paclitaxel-loaded microspheres to small solid tumors.
Download full-text PDF |
Source |
---|
Nat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFSmall Methods
December 2024
Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.
Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!