Purpose: Radionuclides emitting low-energy electrons (Auger and conversion electrons of <50 keV) are potentially useful for cancer therapy when conjugated to an antibody, because they can irradiate the cell to which they bind while producing relatively little irradiation of surrounding cells and tissues. We showed previously the ability of such antibody conjugates to treat micrometastatic, disseminated human B-lymphoma in a severe combined immunodeficient mouse model using an anti-CD74 antibody. In this study, we have evaluated the ability of such conjugates to treat s.c. tumors.

Experimental Design: Severe combined immunodeficient mice were injected s.c. with Raji, Daudi, or RL B-lymphoma human tumor cells. Antibodies to CD74, CD20, or HLA-DR were radiolabeled with (111)In or (125)I and injected i.v. at various times starting at day 5, and tumor growth was monitored. Controls included the testing of unlabeled antibodies, labeled nonreactive antibodies, and a combination of the two.

Results: Therapy of s.c. B-lymphoma was more difficult than therapy of tumor cells that had been injected i.v. Although large, macroscopic tumors were not effectively treated, therapy was effective on s.c. Daudi tumors on day 36 after injection of this slowly growing tumor, with an (111)In anti-CD74 antibody given in two doses. An anti-CD20 antibody labeled with either (111)In or (125)I was able to effectively treat s.c. RL tumors when given as late as day 16 after tumor inoculation. The largest tumors that were effectively treated were macroscopic thin discs (<2 mm in diameter) growing on the mesentery.

Conclusion: These results extend previous evidence that antibody conjugates with emitters of low-energy electrons can be effective therapeutic agents for micrometastatic cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

radionuclides emitting
8
emitting low-energy
8
low-energy electrons
8
therapy small
4
small subcutaneous
4
subcutaneous b-lymphoma
4
b-lymphoma xenografts
4
xenografts antibodies
4
antibodies conjugated
4
conjugated radionuclides
4

Similar Publications

Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy.

Nucl Med Biol

December 2024

Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada.

Targeted Alpha Therapy has shown great promise in cancer treatment, sparking significant interest over recent decades. However, its broad adoption has been impeded by the scarcity of alpha-emitters and the complexities related to their use. The availability of these radionuclides is often constrained by the intricate production processes and purification, as well as regulatory and logistical challenges.

View Article and Find Full Text PDF

Purpose: Uveal melanoma (UM) is the most common primary ocular malignancy. The size and location of the tumor are decisive for brachytherapy with the β-emitting ruthenium-106 (Ru-106) plaque. The treatment of juxtapapillary and juxtafoveolar UM may be challenging because of the proximity or involvement of the macula and optic nerve and high recurrence rates.

View Article and Find Full Text PDF

Radiopharmaceutical therapy (RPT) enhances tumor response to immune checkpoint inhibitors (ICI) in preclinical models, but the effects of different radioisotopes have not been thoroughly compared. To evaluate mechanisms of response to RPT+ICI, we used NM600, an alkylphosphocholine selectively taken up by most tumors. Effects of Y-, Lu-, and Ac-NM600 + ICIs were compared in syngeneic murine models, B78 melanoma (poorly immunogenic) and MC38 colorectal cancer (immunogenic).

View Article and Find Full Text PDF

Cd (T = 6.5 h) and Cd (T = 461.9 d) are promising non-standard gamma-emitting radionuclides with significant potential for SPECT use.

View Article and Find Full Text PDF

Ionizing radiation emitted from radionuclides is present everywhere in the environment. It is the main source of health hazards to the general public. The present study elaborates on the analysis of primordial radionuclides in the collected soil samples from the Main Central Thrust (MCT) region of Uttarakhand Himalaya in a grid pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!