AI Article Synopsis

Article Abstract

Purpose: Prenylation is essential for membrane localization and participation of proteins in various signaling pathways. This study examined the role of farnesylated and geranylgeranylated proteins in the regulation of myeloma cell proliferation.

Experimental Design: Antiproliferative and apoptotic effects of various modulators of farnesylated and geranylgeranylated proteins were investigated in myeloma cells.

Results: Depletion of geranylgeranylpyrophosphate inhibited myeloma cell proliferation through accumulation of cells in G(1) phase of the cell cycle and loss of cells in S phase. In contrast, depletion of farnesylpyrophosphate had no or only minor effects. Furthermore, inhibition of geranylgeranyl transferase I activity was more effective in reducing myeloma cell growth when compared with inhibition of farnesyl transferase activity. This indicates that protein geranylgeranylation is important for myeloma cell proliferation and cell cycle progression through G(1). Geranylgeranylated target proteins involved in the control of proliferation include GTPases, such as Rac-1, Cdc42, and RhoA. Inhibition of Rho, Rac, and Cdc42 GTPases by toxin B reduced proliferation, without affecting cell viability, whereas specific inhibition of Rho GTPases by C3 exoenzyme was without effect. This suggests a role for Rac and/or Cdc42 GTPases in myeloma cell growth. Rac-1 activity was found in all myeloma cell lines and was suppressed by the depletion of intracellular pools of geranylgeranylpyrophosphate, whereas interleukin-6 rapidly induced Rac-1 activation. Furthermore, dominant-negative Tat-Rac-1 reduced myeloma cell proliferation, whereas constitutively active Tat-Rac-1 enhanced proliferation.

Conclusion: These results indicate that protein geranylgeranylation is essential for myeloma cell proliferation and suggest that Rac-1 is a regulator of myeloma cell growth.

Download full-text PDF

Source

Publication Analysis

Top Keywords

myeloma cell
40
cell growth
16
cell proliferation
16
cell
13
geranylgeranylated proteins
12
myeloma
11
proteins involved
8
regulation myeloma
8
farnesylated geranylgeranylated
8
cells phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!