TEP1 is a protein component of two ribonucleoprotein complexes: vaults and telomerase. The vault-associated small RNA, termed vault RNA (VR), is dependent upon TEP1 for its stable association with vaults, while the association of telomerase RNA with the telomerase complex is independent of TEP1. Both of these small RNAs have been shown to interact with amino acids 1-871 of TEP1 in an indirect yeast three-hybrid assay. To understand the determinants of TEP1-RNA binding, we generated a series of TEP1 deletions and show by yeast three-hybrid assay that the entire Tetrahymena p80 homology region of TEP1 is required for its interaction with both telomerase and VRs. This region is also sufficient to target the protein to the vault particle. Electrophoretic mobility shift assays using the recombinant TEP1 RNA-binding domain (TEP1-RBD) demonstrate that it binds RNA directly, and that telomerase and VRs compete for binding. VR binds weakly to TEP1-RBD in vitro, but mutation of VR sequences predicted to disrupt helices near its central loop enhances binding. Antisense oligonucleotide-directed RNase H digestion of endogenous VR indicates that this region is largely single stranded, suggesting that TEP1 may require access to the VR central loop for efficient binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC549401 | PMC |
http://dx.doi.org/10.1093/nar/gki234 | DOI Listing |
Diagnostics (Basel)
January 2025
Department of Computer Science and Engineering, Faculty of Engineering and Technology, Technology Campus (Peenya Campus), Ramaiah University of Applied Sciences, Bengaluru 560058, India.
This study presents a comparative analysis of the multistage diagnosis of Alzheimer's disease (AD), including mild cognitive impairment (MCI), utilizing two distinct types of biomarkers: blood gene expression and clinical biomarker samples. Both of these samples, obtained from participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI), were independently analyzed utilizing machine learning (ML)-based multiclassifiers. This study applied novel machine learning-based data augmentation techniques to gene expression profile data that are high-dimensional, low-sample-size (HDLSS) and inherently highly imbalanced.
View Article and Find Full Text PDFRev Neurosci
November 2024
Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran.
Vault RNAs (vtRNAs) are a novel group of non-coding RNAs that are involved in various signaling mechanisms. vtRNAs are joined by three proteins major vault protein (MVP), vault poly (ADP-ribose) polymerase (VPARP), and telomerase-associated protein 1 (TEP1) to form the vault complex. In humans, only four vtRNA including vtRNA 1-1, vtRNA 1-2, vtRNA 1-3, vtRNA 2-1) have been discovered.
View Article and Find Full Text PDFPLoS One
October 2024
Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia.
Parasit Vectors
October 2024
Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038, China.
Background: Malaria is a serious public health concern. Artemisinin and its derivatives are first-line drugs for the treatment of Plasmodium falciparum malaria. In mammals, artemisinin exhibits potent anti-inflammatory and immunoregulatory properties.
View Article and Find Full Text PDFTrop Med Infect Dis
July 2024
Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China.
Malaria poses a serious threat to human health. Existing vector-based interventions have shortcomings, such as environmental pollution, strong resistance to chemical insecticides, and the slow effects of biological insecticides. Therefore, the need to develop novel strategies for controlling malaria, such as reducing mosquito vector competence, is escalating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!