An in vitro model of hepatitis C virion production.

Proc Natl Acad Sci U S A

Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Published: February 2005

The hepatitis C virus (HCV) is a major cause of liver disease worldwide. The understanding of the viral life cycle has been hampered by the lack of a satisfactory cell culture system. The development of the HCV replicon system has been a major advance, but the system does not produce virions. In this study, we constructed an infectious HCV genotype 1b cDNA between two ribozymes that are designed to generate the exact 5' and 3' ends of HCV. A second construct with a mutation in the active site of the viral RNA-dependent RNA polymerase (RdRp) was generated as a control. The HCV-ribozyme expression construct was transfected into Huh7 cells. Both HCV structural and nonstructural proteins were detected by immunofluorescence and Western blot. RNase protection assays showed positive- and negative-strand HCV RNA. Sequence analysis of the 5' and 3' ends provided further evidence of viral replication. Sucrose density gradient centrifugation of the culture medium revealed colocalization of HCV RNA and structural proteins in a fraction with the density of 1.16 g/ml, the putative density of HCV virions. Electron microscopy showed viral particles of approximately 50 nm in diameter. The level of HCV RNA in the culture medium was as high as 10 million copies per milliliter. The HCV-ribozyme construct with the inactivating mutation in the RdRp did not show evidence of viral replication, assembly, and release. This system supports the production and secretion of high-level HCV virions and extends the repertoire of tools available for the study of HCV biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC549006PMC
http://dx.doi.org/10.1073/pnas.0409666102DOI Listing

Publication Analysis

Top Keywords

hcv rna
12
hcv
11
evidence viral
8
viral replication
8
culture medium
8
hcv virions
8
viral
5
vitro model
4
model hepatitis
4
hepatitis virion
4

Similar Publications

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Chronic hepatitis C virus (HCV) infection poses a major health risk worldwide, with patients susceptible to liver cirrhosis and hepatocellular carcinoma. This study focuses on the development of effective therapeutic strategies for HCV infection through the investigation of immunogenic properties of a DNA construct based on the NS3/4A gene of HCV genotype (g)3a. Gene expression of the mutagenized (mut) NS3/4A target genes was assessed through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis.

View Article and Find Full Text PDF

Resistance-associated substitutions (RASs) are mutations within the hepatitis C (HCV) genome that may influence the likelihood of achieving a sustained virological response (SVR) with direct acting antiviral (DAA) treatment. Clinicians conduct RAS testing to adapt treatment regimens with the intent of improving the likelihood of cure. The Canadian Network Undertaking against Hepatitis C (CANUHC) prospective cohort consists of chronic HCV patients enrolled between 2015 and 2023 across 17 Canadian sites.

View Article and Find Full Text PDF

Objective: To investigate the ability of the estimated plasma gene-expression levels of microRNA (miR)-21 and 126 to define patients suspected to have hepatocellular carcinoma (HCC) among patients with complicated hepatitis-C virus (HCV) infection.

Methods: Patients with uncomplicated (U-HCV) or complicated HCV underwent clinical and ultrasonographic (US) evaluations and assessment for the computerized hepatorenal index, hepatic steatosis index and fibrosis indices. Blood samples were obtained for estimation of serum levels of alpha-fetoprotein (AFP) and tumor necrosis factor-α (TNF-α), and plasma expression levels of miR-21 and miR-126 using the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Background: Point-of-care hepatitis C virus (HCV) testing streamlines testing and treatment pathways. In this study, we established an HCV model of care in a homelessness service by offering antibody and RNA point-of-care testing.

Methods: A nurse and peer-led HCV model of care with peer support were implemented between November 2021 and April 2022 at a homelessness service in Adelaide, Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!