Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Recent data suggest that the type of resuscitation fluid used to treat hemorrhagic shock contributes to cellular dysfunction
Methods: Rats were hemorrhaged, exposed to a hypovolemic shock period for 75 minutes, and then resuscitated for 1 hour. Treatment animals were assigned randomly to lactate Ringer's solution, normal saline solution, bicarbonate Ringer's solution, hypertonic saline solution, rat plasma solution, ketone Ringer's solution, or nonresuscitation. After resuscitation, lung and liver samples were collected and evaluated for apoptosis by using ligation-mediated polymerase chain reaction.
Results: Nonresuscitated shock rats had significantly higher levels of apoptosis in lung and liver. Rats treated with normal saline solution, bicarbonate Ringer's solution, ketone Ringer's solution, and hypertonic saline solution had significantly lower levels of apoptosis in lung compared with nonresuscitated animals. Rats treated with bicarbonate Ringer's solution and ketone Ringer's solution had significantly lower levels of apoptosis in liver tissue when compared with nonresuscitated animals.
Conclusions: Cellular damage results from hemorrhagic shock. The use of resuscitation fluids decreases apoptosis during shock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amjsurg.2004.06.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!