The in vivo evaluation, in New Zealand rabbits, of a sol-gel glass 70% CaO-30% SiO2 (in mol%) and a glass-ceramic obtained from thermal treatment of the glass, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Femoral bone diaphyseal critical defects were filled with: (i) sol-gel glass cylinders, (ii) glass-ceramic cylinders, or (iii) no material (control group). Osteosynthesis was done by means of anterior screwed plates with an associate intramedullar Kirschner wire. Each group included 10 mature rabbits, 9 months old. Follow-up was 6 months. After sacrifice, macroscopic study showed healing of bone defects, with bone coating over the cylinders, but without evidence of satisfactory repair in control group. Radiographic study showed good implant stability and periosteal growth and bone remodelling around and over the filled bone defect. The morphometric study showed minimum evidences of degradation or resorption in glass-ceramic cylinders, maintaining its original shape, but sol-gel glass cylinders showed abundant fragmentation and surface resorption. An intimate union of the new-formed bone to both materials was observed. Mechanical study showed the higher results in the glass-ceramic group, whereas sol-gel glass and control group showed no differences. The minimum degradation of glass-ceramic cylinders suggests their application in critical bone defects locations of transmission forces or load bearing. The performance of sol-gel glass cylinders suggests their usefulness in locations where a quick resorption should be preferable, considering the possibility of serving as drug or cells vehicle for both of them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2004.11.006 | DOI Listing |
Sci Rep
January 2025
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).
View Article and Find Full Text PDFJ Dent
December 2024
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:
Objectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.
Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.
J Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology (RUET), Rajshahi-6204, Bangladesh.
This study explored the structural, optical, antibacterial, and dielectric properties of TiO nanoparticles synthesized using two distinct approaches: sol-gel and biosynthesis. Density functional tight binding (DFTB+) and density functional theory (DFT) calculations were employed alongside experimental techniques to gain a comprehensive understanding of the electronic-property relationships. peel extract was utilized for the biosynthesis method.
View Article and Find Full Text PDFChemosphere
December 2024
State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK. Electronic address:
Exploiting solid powder fluorescence holds significant potential in diverse domains including medicine and forensics. Conventional fingerprint detection methods often fall short due to low contrast, sensitivity, and high toxicity. To addressing these challenges, we present a novel method for latent fingerprint detection using fluorescent carbon dots (CDs) encapsulated into conventional or mesoporous SiO colloidal spheres (CD@SiO or CDs@m-SiO) through a surface functionalization-assisted cooperative assembly process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!