Estimating radionuclide transfer to wild species--data requirements and availability for terrestrial ecosystems.

J Radiol Prot

Centre for Ecology and Hydrology--Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.

Published: December 2004

Assessment of the transfer of radionuclides to wild species is an important component in the estimation of predicted doses to biota. Reviews of available data for the many potential radionuclide-biota combinations which may be required for environmental assessments highlight many data gaps for terrestrial species. Here, we discuss different approaches which have been suggested to compensate for these data gaps. All of the reviewed approaches have merit; however, there is a requirement for transparency in methodology and data provenance which in some instances is currently missing. Furthermore, there is a need to validate the various methodologies to enable their use with confidence. The requirements of improving our ability to predict radionuclide transfer to wild species are discussed and recommendations made.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0952-4746/24/4a/006DOI Listing

Publication Analysis

Top Keywords

radionuclide transfer
8
transfer wild
8
wild species
8
data gaps
8
estimating radionuclide
4
wild species--data
4
species--data requirements
4
requirements availability
4
availability terrestrial
4
terrestrial ecosystems
4

Similar Publications

The presence of the long-lived radionuclides Cs and Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (Cs and Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest.

View Article and Find Full Text PDF

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

Radionuclide sorption dynamics in the Rhone River: Experimental and modelling approach.

J Environ Radioact

January 2025

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/STAAR/LRTA, PSE-ENV/SPDR/LT2S, Saint-Paul-lez-Durance, F-13115, France. Electronic address:

The transfer of radionuclides discharged into rivers by nuclear facilities are conditioned by their solid/liquid fractionation, commonly represented by an equilibrium approach using the distribution coefficient K. This coefficient, largely used in modeling, assumes an instantaneous and completely reversible reaction. However, such assumptions are rarely verified.

View Article and Find Full Text PDF

Marine and atmospheric transport modeling supporting nuclear preparedness in Norway: Recent achievements and remaining challenges.

Sci Total Environ

January 2025

Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.

Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.

View Article and Find Full Text PDF

Trophic transfer of carbon-14 from algae to zebrafish leads to its blending in biomolecules and the dysregulation of metabolism via isotope effect.

Natl Sci Rev

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.

Carbon-14 (C-14) has been a major contributor to the human radioactive exposure dose, as it is released into the environment from the nuclear industry in larger quantities compared to other radionuclides. This most abundant nuclide enters the biosphere as organically bound C-14 (OBC-14), posing a potential threat to public health. Yet, it remains unknown how this relatively low radiotoxic nuclide induces health risks via chemical effects, such as isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!