Inhibition of xenogeneic response in porcine endothelium using RNA interference.

Transplantation

Key Laboratory of Organ Transplantation, Ministry of Education Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: February 2005

AI Article Synopsis

  • The study focuses on using small interfering RNA (siRNA) to silence the alpha1,3 galactosyltransferase (alpha1,3GT) enzyme in porcine cells to reduce the alpha-Gal epitope, aiming to decrease immune rejection in xenotransplantation.
  • Successful siRNA transfection led to a significant reduction in alpha1,3GT mRNA and alpha-Gal expression, confirmed through various assays, including Western blotting and flow cytometry.
  • The silenced porcine endothelial cells showed protection from human serum-mediated cytotoxicity, suggesting that siRNA could be a promising strategy for addressing immune rejection in organ transplants.

Article Abstract

Background: Rejection mediated by antibody recognition of the alpha-Gal epitope (Galalpha1-3Galbeta1-4GlcNAc-R) is a major barrier in porcine-to-human xenotransplantation. Because the synthesis of alpha-Gal is dependent on alpha1,3 galactosyltransferase (alpha1,3GT), methods of blocking this enzyme are needed. RNA interference induced by small interfering RNA (siRNA) is a powerful technique for allowing the silencing of mammalian genes with great specificity and potency. In this study, we use siRNA for silencing of alpha1,3GT with the purpose of reducing expression of the alpha-Gal epitope and subsequently decreasing immunogenicity of porcine endothelial cells.

Methods: alpha1,3GT-specific and control siRNAs were transfected into the porcine aortic endothelial cell line, PED. alpha-Gal expression was assessed by Western blotting, flow cytometry, and immunofluorescence. Protection from human-complement and natural killer (NK)-cell-mediated cytotoxicity was evaluated by Cr-release assays after incubation of PED with normal human serum (NHS) and NK92 cell, respectively.

Results: RNA interference was successfully achieved in PED as witnessed by the specific knock-down of alpha1,3GT mRNA levels. Flow cytometric analysis using the Griffonia simplicifolia isolectin B4 lectin confirmed the suppression of alpha1,3GT activity as evidenced by decreased alpha-Gal. Functional relevance of the knock-down phenotype was illustrated by the finding that silenced PED were protected from cytotoxicity of NHS. Protection from NK-mediated cytotoxicity was not observed.

Conclusions: Our data are the first to demonstrate that RNA interference is a potent tool to down modulate alpha-Gal expression and to protect endothelial cells from complement-mediated cytotoxicity. Gene silencing by siRNA may represent a new approach for overcoming hyperacute and acute vascular rejection.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.tp.0000148733.57977.fdDOI Listing

Publication Analysis

Top Keywords

rna interference
16
alpha-gal epitope
8
alpha-gal expression
8
alpha-gal
6
rna
5
inhibition xenogeneic
4
xenogeneic response
4
response porcine
4
porcine endothelium
4
endothelium rna
4

Similar Publications

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

rRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!