The second-generation histamine-H(1)-receptor antagonists, such as epinastine and cetirizine, are used as non-sedating antihistamines for treating allergic symptoms due to their poor ability to penetrate blood-brain barrier. Because it has been reported that the blood-brain barrier system is disturbed in diabetes, it is possible that second-generation histamine-H(1)-receptor antagonists may easily penetrate the blood-brain barrier and cause potent sedation in diabetics. In the present study, we investigated the effects of first-generation (diphenhydramine) and second-generation (epinastine and cetirizine) histamine-H(1)-receptor antagonists on the duration of pentobarbital-induced loss of the righting reflex (LORR) in non-diabetic and diabetic mice. Systemic treatment with diphenhydramine (3 - 30 mg/kg, s.c.), and intracerebroventricular treatment with epinastine (0.03 - 0.3 microg/mouse) and cetirizine (0.03 - 0.3 microg/mouse) dose-dependently and significantly increased the duration of pentobarbital-induced LORR in both non-diabetic and diabetic mice. Although systemic treatment with epinastine (3 - 30 mg/kg, s.c.) and cetirizine (3 - 30 mg/kg, s.c.) did not affect the duration of pentobarbital-induced LORR in non-diabetic mice, these treatments significantly prolonged it in diabetic mice. Our results suggest that the systemic administration of second-generation histamine-H(1)-receptor antagonists may produce a central nervous system depressant effect in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.fp0040832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!