The soluble epoxide hydrolase (sEH) metabolizes vasodilatory epoxyeicosatrienoic acids (EETs) to their di-hydroxy derivatives. We hypothesized that the metabolism of EETs by the sEH contributes to angiotensin II-induced hypertension and tested the effects of a water-soluble sEH inhibitor, 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) on blood pressure. AUDA (130 microg/mL in drinking water) did not affect blood pressure in normotensive animals but markedly lowered it in mice with angiotensin II-induced hypertension (1 mg/kg per day). The effect of AUDA was accompanied by an increase in urinary salt and water excretion. Intravenous application of AUDA (8 mg/kg) acutely lowered blood pressure and heart rate in animals with angiotensin II-induced hypertension but failed to affect blood pressure in animals with phenylephrine-induced hypertension (29 mg/kg per day). AUDA (0.1 micromol/L) selectively lowered vascular resistance in an isolated perfused kidney preparation from angiotensin II-pretreated mice but not from control mice. In the perfused hind limb and in isolated carotid arteries from angiotensin II-treated mice, AUDA was without effect. The omega-hydroxylase inhibitor N-methylsulfonyl-12,12-dibromododec-11-enamide, which attenuates formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid, decreased tone in carotid arteries from angiotensin II-treated but not from control mice. These data demonstrate that the decrease in blood pressure observed after sEH inhibition in angiotensin II-induced hypertension can be attributed to an initial reduction in heart rate followed by pressure diuresis resulting from increased perfusion of the kidney. Direct vasodilatation of resistance arteries in skeletal muscles does not appear to contribute to the antihypertensive effects of sEH inhibition in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.HYP.0000153792.29478.1d | DOI Listing |
Sci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFTissue Cell
January 2025
Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China.
Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
JVS Vasc Sci
December 2024
Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA.
Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!