Background: It has been proposed that the highest risk for cardiac events in patients with long-QT syndrome subtype 2 (LQT2) is related to mutations in the pore region of the KCNH2 channel. It has also been suggested that a subpopulation of LQT2 patients may benefit from pharmacological therapy with modified KCNH2 channel-blocking drugs.
Methods And Results: In a large LQT2 family (n=33), we have identified a novel nonpore missense mutation (K28E) in the Per-Arnt-Sim (PAS) domain of the KCNH2 channel associated with a malignant phenotype: One third of the suspected gene carriers experienced a major cardiac event. Wild-type and K28E-KCNH2 channels were transiently transfected in HEK293 cells. For the mutant channel, whole-cell patch-clamp analysis showed a reduced current density, a negative shift of voltage-dependent channel availability, and an increased rate of deactivation. Western blot analysis and confocal imaging revealed a trafficking deficiency for the mutant channel that could be rescued by the K+ channel blocker E-4031. In cells containing both wild-type and mutant channels, deactivation kinetics were normal. In these cells, reduced current density was restored with E-4031.
Conclusions: Our data suggest that besides pore mutations, mutations in the PAS domain may also exhibit a malignant outcome. Pharmacological restoration of current density is promising as a mutation-specific therapy for patients carrying this trafficking-defective mutant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000156327.35255.D8 | DOI Listing |
Int J Pharm
January 2025
Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
Nowadays, most of the newly developed active pharmaceutical ingredients (APIs) consist of cohesive particles with a mean particle size of <100μm, a wide particle size distribution (PSD) and a tendency to agglomerate, therefore they are difficult to handle in continuous manufacturing (CM) lines. The current paper focuses on the impact of various glidants on the bulk properties of difficult-to-handle APIs. Three challenging powders were included: two extremely cohesive APIs (acetaminophen micronized (APAPμ) and metoprolol tartrate (MPT)) which previously have shown processing issues during different stages of the continuous direct compression (CDC)-line and a spray dried placebo (SD) powder containing hydroxypropylmethyl cellulose (HPMC), known for its sub-optimal flow with a high specific surface area (SSA) and low density.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China.
As modification strategies are actively developed, the photothermal effect is expected to be a viable way to enhance the PEC water splitting performance. Herein, we demonstrate that the photothermal polyaniline (PANI) layer inserted between CoF cocatalyst and BiVO can enhance the photocurrent density of pure BiVO by 3.50 times.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001 Henan, China; National Key Laboratory of Coking Coal Green Process Research, Zhengzhou University, Zhengzhou 450001, Henan, China. Electronic address:
Hydrogen production via electrocatalytic water splitting has garnered significant attention, due to the growing demand for clean and renewable energy. However, achieving low overpotential and long-term stability of water splitting catalysts at high current densities remains a major challenge. Herein, a CoP@CoNi layered double hydroxide (LDH) electrode was synthesized via a two-step electrodeposition process, demonstrating oxygen evolution reaction, with an overpotential (ƞ) of 373 mV and a Tafel slope of 64.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China.
Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China.
Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!