Background: Mechanisms regulating iron transfer from maternal circulation into milk are yet unknown. Whether intestinal iron transporters, divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1), are present in the mammary gland and are involved in iron transfer into milk are unknown.
Objective: The objective was to examine DMT1 and FPN1 in rat mammary gland at different stages of lactation and to evaluate the effects of maternal iron status.
Design: Rats were fed either 35 mg Fe (control rats) or 8 mg Fe (low-iron rats) per kg diet for 3 wk and were fed the same diet throughout pregnancy and lactation. Mammary gland DMT1, FPN1, transferrin receptor, and ferritin were examined in control rats on days 1, 5, 10, and 20 of lactation and in low-iron rats on days 10 and 20 of lactation. Tissue and milk iron were measured.
Results: Milk iron, DMT1, and FPN1 decreased throughout lactation. Iron status was compromised in low-iron rats, whereas milk iron was maintained. On day 10 of lactation, mammary gland iron and ferritin were lower in the low-iron rats. DMT1, FPN1, and transferrin receptor values were unchanged; however, a smaller-size DMT1 protein was observed in the low-iron rats. On day 20, transferrin receptor increased in the low-iron rats, whereas mammary gland iron, ferritin, DMT1, and FPN1 were unchanged.
Conclusions: The results show that DMT1 and FPN1 concentrations are higher during early lactation and are possibly involved in iron transfer into milk. Mammary gland regulation of DMT and FPN1 during low iron status appears to be different from that in the intestine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ajcn.81.2.445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!