The transcriptional antiterminator protein LicT regulates the expression of Bacillus subtilis operons involved in beta-glucoside metabolism. It consists of an N-terminal RNA-binding domain (co-antiterminator (CAT)) and two phosphorylatable phosphotransferase system regulation domains (PRD1 and PRD2). In the activated state, each PRD forms a dimeric unit with the phosphorylation sites totally buried at the dimer interface. Here we present the 1.95 A resolution structure of the inactive LicT PRDs as well as the molecular solution structure of the full-length protein deduced from small angle x-ray scattering. Comparison of native (inactive) and mutant (constitutively active) PRD crystal structures shows massive tertiary and quaternary rearrangements of the entire regulatory domain. In the inactive state, a wide swing movement of PRD2 results in dimer opening and brings the phosphorylation sites to the protein surface. This movement is accompanied by additional structural rearrangements of both the PRD1-PRD1 ' interface and the CAT-PRD1 linker. Small angle x-ray scattering experiments indicate that the amplitude of the PRD2 swing might even be wider in solution than in the crystals. Our results suggest that PRD2 is highly mobile in the native protein, whereas it is locked upon activation by phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M414642200DOI Listing

Publication Analysis

Top Keywords

transcriptional antiterminator
8
phosphorylation sites
8
small angle
8
angle x-ray
8
x-ray scattering
8
activation lict
4
lict transcriptional
4
antiterminator involves
4
involves domain
4
domain swing/lock
4

Similar Publications

The microaerophilic Gram-negative bacterium H. pylori is associated with various gastric complications and affects nearly half of the global population. Current sero-diagnostic methods for H.

View Article and Find Full Text PDF

Premature expression of genes in mobile genetic elements can be detrimental to their bacterial hosts. Tn916, the founding member of a large family of integrative and conjugative elements (ICEs; aka conjugative transposons), confers tetracycline-resistance and is found in several Gram-positive bacterial species. We identified a transcription terminator near one end of Tn916 that functions as an insulator that prevents expression of element genes when Tn916 is integrated downstream from an active host promoter.

View Article and Find Full Text PDF

RfaH is a crucial protein involved in anti-termination of transcription, which is necessary for spreading virulence in certain types of bacteria, such as Klebsiella pneumoniae and Escherichia coli. RfaH works by interacting directly with RNA polymerase and ribosomes, which activates the production of certain components needed for the bacteria's survival. Targeting RfaH offers a novel approach to hindering bacterial transcription and virulence.

View Article and Find Full Text PDF

Cap-specific mAm modification: A transcriptional anti-terminator by sequestering PCF11 with implications for neuroblastoma therapy.

Mol Cell

November 2024

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan. Electronic address:

In this issue of Molecular Cell, An et al. reports a novel function of cap-specific mAm modification acting as an anti-terminator for premature RNA polymerase II transcription by sequestering a transcriptional terminator PCF11. This study provides new insights into RNA modifications in transcriptional control and cancer treatment.

View Article and Find Full Text PDF

NusG-dependent RNA polymerase pausing is a common feature of riboswitch regulatory mechanisms.

Nucleic Acids Res

November 2024

Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, 203 Althouse, Pennsylvania State University, University Park, PA 16802, USA.

Transcription by RNA polymerase is punctuated by transient pausing events. Pausing provides time for RNA folding and binding of regulatory factors to the paused elongation complex. We previously identified 1600 NusG-dependent pauses throughout the Bacillus subtilis genome, with ∼20% localized to 5' leader regions, suggesting a regulatory role for these pauses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!