Bacterial expression, folding, purification and characterization of soluble NTPDase5 (CD39L4) ecto-nucleotidase.

Biochim Biophys Acta

Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, P.O. Box 670575, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA.

Published: March 2005

The ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases) are a family of enzymes that control the levels of extracellular nucleotides, thereby modulating purinergically controlled physiological processes. Six of the eight known NTPDases are membrane-bound enzymes; only NTPDase 5 and 6 can be released as soluble enzymes. Here we report the first bacterial expression and refolding of soluble human NTPDase5 from inclusion bodies. The results show that NTPDase5 requires the presence of divalent cations (Mg2+ or Ca2+) for activity. Positive cooperativity with respect to hydrolysis of its preferred substrates (GDP, IDP and UDP) is observed, and this positive cooperativity is attenuated in the presence of nucleoside monophosphate products (e.g., GMP and AMP). In addition, comparing the biochemical properties of wild-type NTPDase5 and those of a mutant NTPDase5 (C15S, which lacks the single, non-conserved cysteine residue), also expressed in bacteria, suggests that Cys15 is not essential for either proper refolding or enzymatic activity (indicating this residue is not involved in a disulfide bond). Moreover, the substrate profile of bacterially expressed NTPDase5, as well as the C15S mutant, was determined to be similar to that of full-length, membrane-bound and soluble NTPDase5 expressed in mammalian COS cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2004.11.017DOI Listing

Publication Analysis

Top Keywords

bacterial expression
8
soluble ntpdase5
8
positive cooperativity
8
ntpdase5
7
expression folding
4
folding purification
4
purification characterization
4
soluble
4
characterization soluble
4
ntpdase5 cd39l4
4

Similar Publications

The universal bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays critical roles in regulating a variety of bacterial functions such as biofilm formation and virulence. The metabolism of c-di-GMP is inversely controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Recently, increasing studies suggested that the protein-protein interactions between DGCs/PDEs and their partners appear to be a common way to achieve specific regulation.

View Article and Find Full Text PDF

Foremost in the design of new β-lactamase inhibitors (BLIs) are the boronic acid transition state inhibitors (BATSIs). Two highly potent BATSIs being developed are S02030 and MB076 strategically designed to be active against cephalosporinases and carbapenemases, especially KPC. When combined with cefepime, S02030 and MB076 demonstrated potent antimicrobial activity against laboratory and clinical strains of expressing a variety of class A and class C β-lactamases, including and .

View Article and Find Full Text PDF

Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.

View Article and Find Full Text PDF

Use of analytical strategies to understand spatial chemical variation in bacterial surface communities.

J Bacteriol

January 2025

Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes.

View Article and Find Full Text PDF

Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!