FeIII supported on resin as an effective catalyst for oxidation was prepared and applied for the degradation of aqueous phenol. Phenol was selected as a model pollutant and the catalytic oxidation was carried out in a batch reactor using hydrogen peroxide as the oxidant. The influent factors on oxidation, such as catalyst dosage, H2O2 concentration, pH, and phenol concentration were examined by considering both phenol conversion and chemical oxygen demand (COD) removal. The FeIII-resin catalyst possesses a high oxidation activity for phenol degradation in aqueous solution. The experimental results of this study show that almost 100% phenol conversion and over 80% COD removal can be achieved with the FeIII-resin catalyst catalytic oxidation system. A series of prepared resin were investigated for improving the oxidation efficiency. It was found that the reaction temperature and initial pH in solution significantly affected both of phenol conversion and COD removal efficiency. The activity of the catalyst significantly decreased at high pH, which was similar to the Fenton-like reaction mechanism. Results in this study indicate that the FeIII-resin catalytic oxidation process is an efficient method for the treatment of phenolic wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2004.09.080 | DOI Listing |
Nanotechnology
January 2025
Centre for Analysis and Synthesis, NanoLund, Lund University, Box 124, Lund, 221 00, SWEDEN.
Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.
View Article and Find Full Text PDFChemistry
January 2025
VIT University, Materials Chemistry Division, School of Advanced Sciences, VIT University, 632014, Vellore, INDIA.
Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis.
View Article and Find Full Text PDFLangmuir
January 2025
CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.
In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!