Repairing upper extremity function would significantly enhance the quality of life for persons with cervical spinal cord injury (SCI). Repair strategy development requires investigations of the deficits and the spontaneous recovery that occurs when cervical spinal cord axonal pathways are damaged. The present study revealed that both anatomically and electrophysiologically complete myelotomies of the C4 spinal cord dorsal columns significantly increased the adult rat's averaged times to first attend to adhesive stickers placed on the palms of their forepaws at 1 week. Complete bilateral myelotomies of the dorsal funiculi and dorsal hemisection, but not bilateral dorsolateral funiculi injuries, also similarly increased these times at 1 week. These data extend a previous finding by showing that a forepaw tactile sensory deficit that occurred in the adult rat after bilateral C4 spinal cord dorsal funiculi injury is due to damage of the dorsal columns. Averaged times to first attend to the stickers also decreased to those of sham-operated rats at 3 and 4 weeks post-dorsal hemisection with weekly testing. In contrast, a separate group of rats with dorsal hemisections had significantly increased times when tested only at 4 weeks. These data indicate that frequent assessment of this particular behavior in rats with dorsal hemisections extinguishes it and/or engenders a learned response in the absence of sensory axons in the dorsal columns and dorsolateral funiculi. This finding contrasted with weekly testing of grid walking where increased forelimb footfall numbers persisted for 4 weeks post-dorsal hemisection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2004.10.016DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
cervical spinal
12
dorsal columns
12
dorsal
9
adult rat
8
cord injury
8
cord dorsal
8
averaged times
8
times attend
8
dorsal funiculi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!