With an isospin- and momentum-dependent transport model, we find that the degree of isospin diffusion in heavy-ion collisions at intermediate energies is affected by both the stiffness of the nuclear symmetry energy and the momentum dependence of the nucleon potential. Using a momentum dependence derived from the Gogny effective interaction, recent experimental data from NSCL-MSU on isospin diffusion are shown to be consistent with a nuclear symmetry energy given by E(sym)(rho) approximately 31.6(rho/rho(0))(1.05) at subnormal densities. This leads to a significantly constrained value of about -550 MeV for the isospin-dependent part of the isobaric incompressibility of isospin asymmetric nuclear matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.94.032701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!