We have used a radio frequency quadrupole decelerator to decelerate antiprotons emerging from the CERN Antiproton Decelerator from MeV- to keV-scale energy, and collected five decelerated pulses in a multiring trap. Some 5 x 10(6) antiprotons were stacked in this way. Cooling of the trapped antiprotons by a simultaneously trapped electron plasma was studied nondestructively via shifts in plasma mode frequencies. We have also demonstrated the first step in extracting a 10-500 eV antiproton beam from the trap.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.94.023401 | DOI Listing |
Rev Sci Instrum
December 2024
Plasmaphysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany.
A new high energy proton radiography facility PRIOR-II (Proton Microscope for FAIR) has been designed, constructed, and successfully commissioned at the GSI Helmholtzzentrum für Schwerionenforschung (Darmstadt, Germany) pushing the technical boundaries of charged particle radiography with normal conducting magnets to the limits. The setup is foreseen to become a new and powerful user facility for carrying out fundamental science experiments in the fields of plasma and shock wave physics, material science, and medical physics. It will help address several unsolved scientific challenges, which require high-speed and precise non-invasive diagnostic methods capable of probing matter with up to 100 g/cm2 areal density.
View Article and Find Full Text PDFRev Sci Instrum
October 2023
CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.
We present the design and characterization of a cryogenic window based on an ultra-thin aluminized biaxially oriented polyethylene terephthalate foil at T < 10 K, which can withstand a pressure difference larger than 1 bar at a leak rate <1×10-9 mbar l/s. Its thickness of ∼1.7 μm makes it transparent to various types of particles over a broad energy range.
View Article and Find Full Text PDFMicromachines (Basel)
September 2023
Facility for Antiproton and Ion Research in Europe (FAIR), Planckstraße 1, 64291 Darmstadt, Germany.
This paper reviews the development and present status of a novel gas dynamic RF-only funnel technique for low-energy ion beam extraction into vacuum. This simple and original technique allows for the production of high-quality continuous and pulsed ion beams in a wide range of masses, which have a very small transverse and longitudinal emittance.
View Article and Find Full Text PDFSci Rep
January 2023
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain.
Diamonds are supposedly abundantly present in different objects in the Universe including meteorites, carbon-rich stars as well as carbon-rich extrasolar planets. Moreover, the prediction that in deep layers of Uranus and Neptune, methane may undergo a process of phase separation into diamond and hydrogen, has been experimentally verified. In particular, high power lasers have been used to study this problem.
View Article and Find Full Text PDFSci Rep
August 2020
Department of Physics, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.
This study investigates the photon production from thermal neutron capture in a gadolinium (Gd) infused tumor as a result of secondary neutrons from particle therapy. Gadolinium contrast agents used in MRI are distributed within the tumor volume and can act as neutron capture agents. As a result of particle therapy, secondary neutrons are produced and absorbed by Gd in the tumor providing potential enhanced localized dose in addition to a signature photon spectrum that can be used to produce an image of the Gd enriched tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!