Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent methods for stabilizing systems like, e.g., loss-modulated CO2 lasers, involve inducing controlled monostability via slow parameter modulations. However, such stabilization methods presuppose detailed knowledge of the structure and size of basins of attraction. In this Brief Report, we numerically investigate basin size evolution when parameters are varied between dissipative and conservative limits. Basin volumes shrink fast as the conservative limit is approached, being well approximated by Gaussian profiles, independently of the period. Basin shrinkage and vanishing is due to the absence of bounded motions in the Hamiltonian limit. In addition, we find basin volume to remain essentially constant along a peculiar parameter path along which it is possible to recover the dissipation rate solely from metric properties of self-similar structures in phase-space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.71.017202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!