We report here the synthesis and characterization of three amphiphilic fullerene derivatives and their Langmuir-Blodgett thin films. Two of the C(60) amphiphiles are mono-derivatives with a long alkyl chain terminated with either -COOH (2) or NH(2) (3) as the hydrophilic headgroup, and the third one (5) is designed to bear the same NH(2) group as 3 but with 10 additional hydrophobic alkyl chains grafted on the C(60) sphere (Scheme 1). These amphiphiles form stable, ordered monolayers at the air-water interface. The molecular packing at the air-water interface and the mean area per molecule are determined by pressure isotherms at room temperature. Hysteresis of pressure isotherms of side chain C(60) (5) shows complete reversibility upon compression and decompression, which suggests that side chains on the C(60) sphere inhibit formation of aggregates at the air-water interface. Comparative studies of all three amphiphiles allow us to better determine the interaction between C(60)'s and their self-assembly kinetics at the air-water interface. Monolayers of monoderivatized amphiphiles (2 and 3) were transferred successfully onto quartz substrates as Z-type multilayered Langmuir-Blodgett films, and monolayers of 5 were transferred as Y-type films. Detailed characterization of the multilayer films (Z-type deposition) prepared from amine-terminated C(60) (3) using X-ray and neutron reflectometry reveals staggering of C(60) spheres and a head-to-head (Y-type) structure presumably due to flipping and reattaching of C(60) amphiphiles to the previous underlying C(60) layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la047835y | DOI Listing |
Heliyon
January 2025
Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.
View Article and Find Full Text PDFFood Res Int
February 2025
National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.
Elucidation of the vibrational relaxation process of interfacial water is indispensable for understanding energy dissipation at the aqueous interface. In this study, the vibrational relaxation dynamics of the hydrogen-bonded OH (HB OH) stretch vibration was investigated at the air/isotopically diluted water (HOD-DO) interface by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy. We observed the temporal change of the excited-state band ( = 1 → 2 transition), which enables a reliable determination of the time of interfacial water.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Chemical and Petroleum Engineering, University of Calgary Calgary Alberta Canada. Electronic address:
Hypothesis: Viscous fingering instabilities of air displacing water displacing mineral oil is controlled by the air injection rate. Given the lower viscosity of the water, air would tend to finger through the water and then after it reaches the oil, proceed to finger through the oil.
Experiments: In a radial Hele-Shaw cell, experiments were conducted on air injection into mineral oil and air injection into a volume of water at the center of the cell which in turn is surrounded by mineral oil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!