The dynamics of water molecules in the layered vanadium pentoxide hydrate, V(2)O(5).nH(2)O, were studied by quasi-elastic neutron scattering (QENS) measurements. Heterogeneity of the dynamic properties was confirmed by alpha-relaxation model analysis. Translational diffusion of monolayer and double-layer water molecules is by site-to-site diffusion and is reduced relative to that of bulk water. Water molecules lose their mobility markedly and solidify with decreasing temperature. However, mobile water remains at 253 K. Rotational diffusion coefficients are unaffected by confinement and are very similar to the bulk values determined at temperatures in the range 253-298 K. The dynamic speed characterized by QENS is much faster than that expected from the data determined by deuterium NMR (DNMR) measurements at low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0401009DOI Listing

Publication Analysis

Top Keywords

water molecules
16
vanadium pentoxide
8
pentoxide hydrate
8
dynamic properties
8
quasi-elastic neutron
8
neutron scattering
8
water
5
interlayer water
4
molecules
4
molecules vanadium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!