The effect of the migration of charged units on the structure of hydrophobically modified polyelectrolyte gels swollen by D(2)O was studied by small-angle neutron scattering on an example of gels of terpolymers of acrylic acid, n-dodecylacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid (quenched charged units) and gels of copolymers of partially neutralized acrylic acid and n-dodecylacrylate (annealed charged units). The content of charged units did not exceed 20 mol %, so that the electrostatic repulsion was too weak to disrupt the hydrophobic domains formed by self-assembled n-dodecyl chains, which was evidenced by NMR data. It was shown that upon increasing the charge content both types of gels undergo microphase separation with the formation of hydrophobic clusters consisting of several densely packed hydrophobic domains and hydrophilic regions swollen by water, where most of the charged repeat units and counterions are located. The dimensions of the nanostructure of the gels with quenched and annealed charged groups were compared. It was shown that the size of clusters in the gels with annealed charged units is much bigger than that in the gels with the same fraction of quenched charged units. This effect was attributed to a much weaker electrostatic repulsion in the corona of the hydrophobic clusters in the gels with annealed charged groups, because the charged units repelling each other are able to move farther apart.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0478999DOI Listing

Publication Analysis

Top Keywords

charged units
32
annealed charged
16
charged
10
units
9
microphase separation
8
gels
8
acrylic acid
8
acid n-dodecylacrylate
8
quenched charged
8
electrostatic repulsion
8

Similar Publications

Effective documentation and coding in health care are crucial for patient care, safety, workflow improvement and accurate billing. This quality improvement study aimed to enhance History and Physical (H&P) note documentation and charge capture processes to integrate coding and billing aspects, capture authentic work, preserve the H&P's integrity and align H&P-related revenue with actual performance. A multidisciplinary team, including divisional leadership and specialists in documentation improvement, electronic health records, lean/six sigma methodology, a nocturnist and a senior-level physician coding auditor, initiated a quality improvement project.

View Article and Find Full Text PDF

Vintages for New Fashion: Red-Shifted Photoswitching via the Triplet-Photoreaction Channel with Charge-Transfer Complex Sensitizers.

J Am Chem Soc

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China.

Triplet-sensitization has been proven invaluable for creating photoswitches operated over a full visible-light spectrum. While designing efficient triplet-sensitizers is crucial for establishing visible-light photochromism, it remains an appealing yet challenging task. In this work, we propose a versatile strategy to fabricate triplet-sensitizers with intermolecular charge-transfer complexes (CTCs).

View Article and Find Full Text PDF

Pairing photocatalytic 1,2,3,4-tetrahydroisoquinoline semi-dehydrogenation reaction (THIQ-SDR) with two-electron oxygen reduction reaction (2e- ORR) is a green solar to chemical strategy by simultaneously utilizing the photo-excited electrons and holes. However, it is still short of high-efficiency photocatalyst to drive two reactions above. In the present work, crystalline pyrene-thiourea/urea covalent organic frameworks (COF-Py-S and -O) were synthesized and demonstrated as high-performance metal-free photocatalysts.

View Article and Find Full Text PDF

Nonfullerene acceptors with carbon-oxygen-bridged fused nonacyclic donor units enable efficient organic solar cells.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.

The power conversion efficiency (PCE) of an organic solar cell (OSC) mainly depends on the chemical structures and intrinsic properties of its active layer materials. The development of new nonfullerene acceptors (NFAs) has significantly boosted the PCEs of OSCs over the last decade. Herein, two carbon-oxygen-bridged fused nonacyclic donor units were developed to synthesize two NFAs, namely TTPIC-Ar and iTTPIC-Ar, respectively.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!