Calcium sulfate adheres to the inside of liquefying pipes during the production of liquefied hydrogen fluoride. It is regularly washed away with water jets every six months. Two days before the operation, the pipes were experimentally washed down with water and the safety of the operation was confirmed with acidic washing fluid (pH 5). A 65-year-old man was severely sprayed on his face just after the start of the operation. He died half an hour later from acute respiratory failure. High serum concentrations of ionized fluoride indicated massive exposure to hydrofluoric acid (HFA). Pathological findings revealed severe bilateral pulmonary congestion and edema. It was hypothesized that calcium sulfate hardened with the water during the experimental washing and caused some blockages in the pipes. Consequently, choking of the pipes caused the HFA to collect and the washing fluid ran back. Weak HFA is not pungent to skin and mucous membranes. Therefore, it was suggested that a low concentration of HFA was inhaled directly into the peripheral respiratory tracts. No risk management against HFA exposure was in place during the operation. It is especially important to take thorough safety measures against inhalation of HFA. It is also essential that there are no stoppages of the pipes before the operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1191/0748233703th174oa | DOI Listing |
Nanotechnology
January 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.
Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China University of Science and Technology, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, 130 Meilong Road, 200237, Shanghai, CHINA.
Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
Correction for 'Photocatalytic membranes based on Cu-NH-MIL-125(Ti) protected by poly(vinylidene fluoride) for high and stable hydrogen production' by Emilia Gontarek-Castro , 2025, https://doi.org/10.1039/d4mh01397b.
View Article and Find Full Text PDFNature
January 2025
Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany.
Graphene is a single-layered sp-hybridized carbon allotrope, which is impermeable to all atomic entities other than hydrogen. The introduction of defects allows selective gas permeation; efforts have been made to control the size of these defects for higher selectivity. Permeation of entities other than gases, such as ions, is of fundamental scientific interest because of its potential application in desalination, detection and purification.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
Latilactobacillus curvatus, found in various fermented foods, is a promising probiotic with unique health benefits. Lipoteichoic acid (LTA) is a characteristic amphiphilic surface polymer of gram-positive bacteria and exhibits immunomodulatory activities. Despite the structural diversity of LTA among different bacterial species and strains, no information is available on the chemical structure of LTA in L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!