While there is increasing evidence that Ca2+ plays an important role in regulating cell proliferation, the precise mechanisms have not been clearly elucidated so far. In order to gain insight into how Ca2+ controls cell division, the rate of proliferation, cell volume, viability and attachment to the culture support were measured in NG108-15 neuroblastoma cells in the presence of various extracellular Ca2+ concentrations ([Ca2+]o). Culture medium [Ca2+]o was decreased from 1.8 mmol/l to various values down to 1 micromol/l with EGTA. The rate of cell proliferation was almost independent of [Ca2+]o between 1.8 mmol/l and 45 micromol/l. It was decreased by about 50% at 12 umol/l Ca2+ and was almost zero in the presence of 1 micromol/l Ca2+. As we hawe shown previously (Rouzaire-Dubois and Dubois 1998) long-term hypertonicity increased the cell volume and decreased the rate of proliferation. The effects of hypertonicity and decrease in [Ca2+]o on cell proliferation were synergistic and can be described by cell size-dependent and independent mechanisms, respectively. Relative to control conditions (1.8 mmol/l Ca2+), decreases in [Ca2+]o to 12 and 1 micromol/l decreased the cell viability to 76 and 52% and the cell adhesion to dishes to 16 and 3%, respectively. Altogether, these results indicate that the effects of alteration in [Ca2+]o and cell size on neuroblastoma cell proliferation are independent and act on different signalling pathways controlling cell division.
Download full-text PDF |
Source |
---|
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!