Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for enhanced chlorinated ethene degradation and o-xylene oxidation.

Appl Microbiol Biotechnol

Department of Chemical Engineering, University of Connecticut, 191 Auditorium Road, U-3222, Storrs, CT 06269-3222, USA.

Published: September 2005

Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 has been shown to degrade all chlorinated ethenes individually and as mixtures. Here, DNA shuffling of the alpha hydroxylase fragment of ToMO (TouA) and saturation mutagenesis of the TouA active site residues I100, Q141, T201, F205, and E214 were used to enhance the degradation of chlorinated aliphatics. The ToMO mutants were identified using a chloride ion screen and then were further examined by gas chromatography. Escherichia coli TG1/pBS(Kan)ToMO expressing TouA saturation mutagenesis variant I100Q was identified that has 2.8-fold better trichloroethylene (TCE) degradation activity (apparent Vmax of 1.77 nmol min-1 mg-1 protein-1 vs 0.63 nmol min-1 mg-1 protein-1). Another variant, E214G/D312N/M399V, has 2.5-fold better cis-1,2-dichloroethylene (cis-DCE) degradation activity (apparent Vmax of 8.4 nmol min-1 mg-1 protein-1 vs 3.3 nmol min-1 mg-1 protein-1). Additionally, the hydroxylation regiospecificity of o-xylene and naphthalene were altered significantly for ToMO variants A107T/E214A, T201G, and T201S. Variant T201S produced 2.0-fold more 2,3-dimethylphenol (2,3-DMP) from o-xylene than the wild-type ToMO, whereas variant A107T/E214A had 6.0-fold altered regiospecificity for 2,3-DMP formation. Variant A107T/E214A also produced 3.0-fold more 2-naphthol from naphthalene than the wild-type ToMO, whereas the regiospecificity of variant T201S was altered to synthesize 3.0-fold less 2-naphthol, so that it made almost exclusively 1-naphthol (96%). Variant T201G was more regiospecific than variants A107T/E214A and T201S and produced 100% 3,4-DMP from o-xylene and >99% 1-naphthol from naphthalene. Hence, ToMO activity was enhanced for the degradation of TCE and cis-DCE and for the regiospecific hydroxylation of o-xylene and naphthalene through DNA shuffling and saturation mutagenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-005-1923-4DOI Listing

Publication Analysis

Top Keywords

nmol min-1
16
min-1 mg-1
16
mg-1 protein-1
16
saturation mutagenesis
12
toluene-o-xylene monooxygenase
8
pseudomonas stutzeri
8
stutzeri ox1
8
dna shuffling
8
toua saturation
8
degradation activity
8

Similar Publications

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Biological Characteristics of a Novel Bibenzyl Synthase () Gene from Catalyzing Dihydroresveratrol Synthesis.

Molecules

November 2024

Key Laboratory for Biodiversity Conservation in Karst Mountain Area of Southwestern China, National Foresty and Grassland Administration, Guiyang 550005, China.

Bibenzyl compounds are one of the most important bioactive components of natural medicine. However, as a traditional herbal medicine is rich in bibenzyl compounds and performs functions such as acting as an antioxidant, inhibiting cancer cell growth, and assisting in neuro-protection. The biosynthesis of bibenzyl products is regulated by bibenzyl synthase (BBS).

View Article and Find Full Text PDF

Weaning stress in pigs is associated with low feed intake and poor nutrient utilization. Cysteine is a sulfur amino acid with key roles in pig production, but how cysteine metabolism and requirements are affected by weaning stress should be better defined. The objective of this study was to determine the collective impact of weaning and feed restriction on tissue cysteine metabolism.

View Article and Find Full Text PDF

The litchi genome has five anthocyanidin reductase () and two leucoanthocyanidin reductase () members. The high expression of and is significantly positively correlated with the abundant proanthocyanidins and (-)-epicatechin (EC) in the pericarp, leaf, root, etc. The recombinant LcANR1a/2a converts cyanidin to both EC and (+)-catechin (CT) (EC:CT ≈ 1:1) and converts delphindin to (+)-gallocatechin and (-)-epigallocatechin; the recombinant LcLAR1/2 converts leucocyanidin to CT.

View Article and Find Full Text PDF

L-arginine and its (patho-)physiologically active derivatives, L-homoarginine and asymmetric dimethylarginine (ADMA), show significant differences in their renal clearance. The underlying molecular mechanisms remain to be elucidated, but selective tubular transport protein-mediated mechanisms likely play a role. In the present study, we investigate the human heteromeric transporter bAT-rBAT (encoded by the SLC7A9 and SLC3A1 genes) as a potential candidate because it is localized in the luminal membrane of human proximal tubule cells and capable of mediating the cellular uptake of amino acids, including L-arginine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!