Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal.

J Exp Biol

Department of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.

Published: February 2005

Subterranean mammals like the blind mole-rat (Rodentia: Spalax ehrenbergi) are functionally blind and possess poor auditory sensitivity, limited to low-frequency sounds. Nevertheless, the mole-rat demonstrates extremely efficient ability to orient spatially. A previous field study has revealed that the mole-rat can assess the location, size and density of an underground obstacle, and accordingly excavates the most efficient bypass tunnel to detour around the obstacles. In the present study we used a multidisciplinary approach to examine the possibility that the mole-rat estimates the location and physical properties of underground obstacles using reflected self-generated seismic waves (seismic 'echolocation'). Our field observations revealed that all the monitored mole-rats produced low-frequency seismic waves (250-300 Hz) at intervals of 8+/-5 s (range: 1-13 s) between head drums while digging a bypass to detour an obstacle. Using a computerized simulation model we demonstrated that it is possible for the mole-rat to determine its distance from an obstacle boundary (open ditch or stone) by evaluating the amplitude (intensity) of the seismic wave reflected back to it from the obstacle interface. By evaluating the polarity of the reflected wave the mole-rat could distinguish between air space and solid obstacles. Further, the model showed that the diffracted waves from the obstacle's corners could give the mole-rat precise information on the obstacle size and its relative spatial position. In a behavioural experiment using a special T-maze setup, we tested whether the mole-rat can perceive seismic waves through the somatosensory system and localize the source. The results revealed that the mole-rat is able to detect low frequency seismic waves using only its paws, and in most cases the mole-rats determined accurately the direction of the vibratory source. In a histological examination of the glabrous skin of the mole-rat's paws we identified lamellate corpuscle mechanoreceptors that might be used to detect low frequency seismic waves. The combined findings from these different approaches lead us to suggest that a specialized seismic 'echolocation' system could be used by subterranean mammals to determine the most energy-conserving strategy with which to bypass an obstacle, as well as to estimate their distance from the surface, keeping their tunnels at the optimal depth.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.01396DOI Listing

Publication Analysis

Top Keywords

seismic waves
24
seismic
9
mole-rat
9
reflected self-generated
8
self-generated seismic
8
subterranean mammals
8
revealed mole-rat
8
seismic 'echolocation'
8
detect low
8
low frequency
8

Similar Publications

Estimating seismic anisotropy parameters, such as Thomson's parameters, is crucial for investigating fractured and finely layered geological media. However, many inversion methods rely on complex physical models with initial assumptions, leading to non-reproducible estimates and subjective fracture interpretation. To address these limitations, this study utilizes machine learning methods: support vector regression, extreme gradient boost, multi-layer perceptron, and a convolutional neural network.

View Article and Find Full Text PDF

The data presented here are the result of microtremor measurements at 44 points in three different soil types classified according to their fundamental vibration frequencies, on the metropolitan area of Veracruz-Boca del Río, Mexico. These Data are raw and was obtained using a GÜRALP 6TD model broadband orthogonal triaxial seismometer with an integrated 24-bit digitizer with a minimum recording time of 30 min and a recording rate of 100 samples per second (sps). The microtremor records were used to construct the H/V spectral ratios using the method of Nakamura.

View Article and Find Full Text PDF

We present the first controlled-environment measurements of the optical path-length change response of telecommunication submarine cables to active seismic and acoustic waves. We perform the comparison among integrated (optical interferometry) and distributed (distributed acoustic sensing, DAS) fibre measurements and ground truth data acquired by 58 geophones, 20 three-axis seismometers and 7 microphones. The comparison between different seismic acquisition methods is an essential step towards full validation and calibration of the data acquired using novel cable-based sensing techniques.

View Article and Find Full Text PDF

The incident angle of seismic waves influences the dynamic response of rock slopes. However, the relationship between the back-slope effect in strong earthquake areas and the incident angle has not been well-explained. Based on the equivalent nodal force method and the viscoelastic artificial boundary theory, the oblique incidence of seismic P-wave and SV-wave are carried out in FLAC3D software.

View Article and Find Full Text PDF

Carbonate stringers are defined as a slab of carbonate bodies encased inside salt. In Oman, the intra-salt carbonate stringers are a very common target, especially in South Oman Salt Basin (SOSB). These stringers contain a large amount of hydrocarbon resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!