Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression.

Proc Natl Acad Sci U S A

National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China.

Published: February 2005

Targeted gene modification mediated by single-stranded oligonucleotides (SSOs) holds great potential for widespread use in a number of biological and biomedical fields, including functional genomics and gene therapy. By using this approach, specific genetic changes have been created in a number of prokaryotic and eukaryotic systems. In mammalian cells, the precise mechanism of SSO-mediated chromosome alteration remains to be established, and there have been problems in obtaining reproducible targeting efficiencies. It has previously been suggested that the chromatin structure, which changes throughout the cell cycle, may be a key factor underlying these variations in efficiency. This hypothesis prompted us to systematically investigate SSO-mediated gene repair at various phases of the cell cycle in a mammalian cell line. We found that the efficiency of SSO-mediated gene repair was elevated by approximately 10-fold in thymidine-treated S-phase cells. The increase in repair frequency correlated positively with the duration of SSO/thymidine coincubation with host cells after transfection. We supply evidence suggesting that these increased repair frequencies arise from a thymidine-induced slowdown of replication fork progression. Our studies provide fresh insight into the mechanism of SSO-mediated gene repair in mammalian cells and demonstrate how its efficiency may be reliably and substantially increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC548982PMC
http://dx.doi.org/10.1073/pnas.0406991102DOI Listing

Publication Analysis

Top Keywords

gene repair
16
sso-mediated gene
12
replication fork
8
fork progression
8
mammalian cells
8
mechanism sso-mediated
8
cell cycle
8
gene
6
repair
6
increased efficiency
4

Similar Publications

L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.

View Article and Find Full Text PDF

[Next generation sequencing (NGS)-based molecular panel analysis for metastatic prostate cancer: how often can we detect druggable mutations? : NGS for metastatic adenocarcinoma of the prostate].

Urologie

January 2025

Klinik für Urologie, Uro-Onkologie, roboter-assistierte und spezielle urologische Chirurgie, Uniklinik Köln, Kerpener Str. 62, 50927, Köln, Deutschland.

Introduction: Prostate cancer guidelines recommend molecular analysis of biomaterial following resistance to first-line systemic therapy in order to identify druggable mutations. We report on our results of molecular analysis of tissue specimens via next generation sequencing (NGS) in men with metastatic castration resistant prostate cancer (mCRPC).

Patients And Methods: In all, 311 mCRPC patients underwent NGS analysis from biopsy samples of progressive metastatic lesions or archival radical prostatectomy specimens.

View Article and Find Full Text PDF

Recent Insights Into Wnt-Related tRNA-Derived Fragments (tRFs) in Human Diseases.

J Cell Biochem

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.

tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.

View Article and Find Full Text PDF

Glutamine, Serine and Glycine at Increasing Concentrations Regulate Cisplatin Sensitivity in Gastric Cancer by Posttranslational Modifications of KDM4A.

Mol Carcinog

January 2025

Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China.

Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling.

View Article and Find Full Text PDF

Exploring the Therapeutic Potential of TROP2 Gene Silencing in Hepatocellular Carcinoma.

Recent Pat Biotechnol

January 2025

Professor Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.

Background: Trophoblast Cell Surface Antigen 2 (Trop2) is a transmembrane glycoprotein that has been implicated in the progression and metastasis of various cancers, including hepatocellular carcinoma (HCC). Targeting Trop2 expression may represent a promising approach for the development of novel therapeutic strategies.

Objectives: This study aimed to investigate the effects of Trop2 knockdown using small interfering RNA (siRNA) on the phenotypic and molecular characteristics of the HepG2 liver cancer cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!