AI Article Synopsis

  • The hematopoietic stem cell (HSC) compartment includes long-term reconstituting (LTR) HSC, which can sustain blood cell production for life, and short-term reconstituting (STR) HSC, which only lasts a few weeks in mice.
  • Researchers used advanced sorting techniques to distinguish between LTR and STR stem cell subsets, identifying specific markers for each group.
  • A study identified 210 differentially expressed genes related to LTR HSC function, highlighting the significance of certain genes, including GATA3, in their activity and suggesting these genes play a critical role in stem cell biology beyond just bone marrow.

Article Abstract

The hematopoietic stem cell (HSC) compartment is composed of long-term reconstituting (LTR) and short-term reconstituting (STR) stem cells. LTR HSC can reconstitute the hematopoietic system for life, whereas STR HSC can sustain hematopoiesis for only a few weeks in the mouse. Several excellent gene expression profiles have been obtained of the total hematopoietic stem cell population. We have used five-color FACS sorting to isolate separate populations of LTR and STR stem cell subsets. The LTR HSC has the phenotype defined as Lin- Sca+ Kit+ 38+ 34-; two subsets of STR HSC were obtained with phenotypes of Lin- Sca+ Kit+ 38+ 34+ and Lin- Sca+ Kit+ 38- 34+. The microarray profiling study reported here was able to identify genes specific for LTR functions. In the interrogated genes (approximately 12,000 probe sets corresponding to 8,000 genes), 210 genes are differentially expressed, and 72 genes are associated with LTR activity, including membrane proteins, signal transduction molecules, and transcription factors. Hierarchical clustering of the 210 differentially expressed genes suggested that they are not bone marrow-specific but rather appear to be stem cell-specific. Transcription factor-binding site analysis suggested that GATA3 might play an important role in the biology of LTR HSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC548308PMC
http://dx.doi.org/10.1073/pnas.0409459102DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
12
stem cell
12
ltr hsc
12
lin- sca+
12
sca+ kit+
12
gene expression
8
long-term reconstituting
8
short-term reconstituting
8
stem cells
8
str stem
8

Similar Publications

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

[Gene coexpression networks: concepts and applications].

Biol Aujourdhui

January 2025

Sorbonne Université, CNRS, Inserm U1156, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 9 Quai St-Bernard, 75005 Paris, France.

The advent of high-throughput omics data and the generation of new algorithms provide the biologists with the opportunity to explore living processes in the context of systems biology aiming at revealing the gene interactions, the networks underlying complex cellular functions. In this article, we discuss two methods for gene network reconstruction, WGCNA (Weighted Gene Correlation Network Analysis) developed by Steve Horvath and collaborators in 2008, and MIIC (Multivariate Information-based Inductive Causation) developed by Hervé Isambert and his team in 2017 and 2024. These two methods are complementary, WGCNA generating undirected networks in which most gene-to-gene interactions are indirect, while MIIC reveals direct interactions and some causal links.

View Article and Find Full Text PDF

Many inflammatory stimuli can induce progenitor cells in the bone marrow to produce increased numbers of myeloid cells as part of the process of emergency myelopoiesis. These events are associated with innate training and can have long-term impacts on hematopoietic stem and progenitor cell (HSPC) development but can also compromise their function. While many cytokines support emergency myelopoiesis, less is known about the mechanisms that temper these events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!