The suppressors of cytokine signaling (SOCS) proteins are a family of SH2 domain-containing intracellular inhibitors of cytokine signal transduction that act by several different mechanisms. Recent evidence suggests that the action of the SOCS proteins may extend beyond the cytokine receptors to signaling initiated by members of the tyrosine kinase receptor family. In this study, the ability of SOCS-5 to negatively regulate signaling cascades downstream of the epidermal growth factor receptor (EGF-R) has been examined by using an EGF-responsive cell line engineered to constitutively express the EGF-R and SOCS-5 or SOCS-5 mutants. SOCS-5 associated with the EGF-R complex in an EGF-independent manner, and the mitogenic response to EGF of all SOCS-5-expressing cell lines was dramatically inhibited when compared with control cell lines. Furthermore, this effect was abrogated after deletion of the SOCS-5 SOCS box. This result suggests that the inhibition of signaling occurs through enhanced proteasomal degradation of the EGF-R through SOCS box recruitment of E3 ubiquitin ligase activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC549009PMC
http://dx.doi.org/10.1073/pnas.0409675102DOI Listing

Publication Analysis

Top Keywords

cytokine signaling
8
epidermal growth
8
growth factor
8
socs proteins
8
cell lines
8
socs box
8
signaling
6
socs-5
6
suppressor cytokine
4
signaling socs-5
4

Similar Publications

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. In mouse models, JARID1D was an important mediator of both visceral and bone metastases.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of Diels et Gilg flavonoids (THF) on acute hepatic injury (AHI). First, high-performance liquid chromatography (HPLC) fingerprints were established to obtain the main chemical components of THF. According to the network pharmacology databases, collect active targets of AHI and potential targets.

View Article and Find Full Text PDF

Introduction: Perioperative neurocognitive dysfunction (PND) is a significant challenge for patients who need surgery worldwide. Morphine can trigger an intense inflammatory reaction in the central nervous system (CNS) at the same time as analgesia, thus adverse effects aggravating PND. Microglia polarization is closely involved in the regulation of neuroinflammation and the TLR4/MyD88/NF-κB signaling pathway.

View Article and Find Full Text PDF

Integrating T-cell inflammation features for prognosis in hepatocellular carcinoma: a novel predictive model.

J Gastrointest Oncol

December 2024

Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.

Background: Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death globally and accounts for 75% to 90% of primary liver cancer cases. The high mortality rate of HCC, coupled with the absence of reliable prognostic biomarkers, makes its treatment and prognosis evaluation challenging. The features of the T cell-inflamed microenvironment include active interferon (IFN)-γ signaling and the presence of cytotoxic effector molecules, antigen presentation, and T-cell activating cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!