Forming and updating object representations without awareness: evidence from motion-induced blindness.

Vision Res

Department of Psychology, Yale University, Box 208205, New Haven, CT 06520-8205, USA.

Published: April 2005

The input to visual processing consists of an undifferentiated array of features which must be parsed into discrete units. Here we explore the degree to which conscious awareness is important for forming such object representations, and for updating them in the face of changing visual scenes. We do so by exploiting the phenomenon of motion-induced blindness (MIB), wherein salient (and even attended) objects fluctuate into and out of conscious awareness when superimposed onto certain global motion patterns. By introducing changes to unseen visual stimuli during MIB, we demonstrate that object representations can be formed and updated even without conscious access to those objects. Such changes can then influence not only how stimuli reenter awareness, but also what reenters awareness. We demonstrate that this processing encompasses simple object representations and also several independent Gestalt grouping cues. We conclude that flexible visual parsing over time and visual change can occur even without conscious perception. Methodologically, we conclude that MIB may be an especially useful tool for studying the role of awareness in visual processing and vice versa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.visres.2004.09.044DOI Listing

Publication Analysis

Top Keywords

object representations
16
motion-induced blindness
8
visual processing
8
conscious awareness
8
awareness
6
visual
6
forming updating
4
object
4
updating object
4
representations
4

Similar Publications

Mental representation of spatial information relies on egocentric (body-based) and allocentric (environment-based) frames of reference. Research showed that spatial memory deteriorates as Alzheimer's disease (AD) progresses and that allocentric spatial memory is among the earliest impaired areas. Most studies have been conducted in static situations despite the dynamic nature of real-world spatial processing.

View Article and Find Full Text PDF

Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.

View Article and Find Full Text PDF

The Representation of Orientation Semantics in Visual Sensory Memory.

Behav Sci (Basel)

December 2024

Department of Psychology, College of Education, Zhejiang University of Technology, Hangzhou 310028, China.

Visual sensory memory constructs representations of the physical information of visual objects. However, few studies have investigated whether abstract information, such as semantic information, is also involved in these representations. This study utilized a masking technique combined with the partial report paradigm to examine whether visual sensory memory representation contains semantic information.

View Article and Find Full Text PDF

Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.

Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.

View Article and Find Full Text PDF

The effect of occlusion on the visual working memory pointer-system.

Cortex

January 2025

The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

To access its online representations, visual working memory (VWM) relies on a pointer-system that creates correspondence between objects in the environment with their memory representations. This pointer-system allows VWM to modify its representations using a process called updating. When the pointer is invalidated, however, VWM triggers a process called resetting in which the no longer relevant representation and pointer are replaced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!