Generalized epilepsy with febrile seizures plus (GEFS+) is an inherited epileptic syndrome with a marked clinical and genetic heterogeneity. Here we report the molecular characterization of a large pedigree with a severe clinical form of GEFS+. Genetic linkage analysis implied the involvement of the FEB3 in the disease phenotype of this family (parametric two-point lod-score of 2.2). Sequencing of the SCN1A gene revealed a novel aspartic acid for glycine substitution at position 1742 of this sodium channel subunit. The amino-acid replacement lies in the pore-forming region of domain IV of SCN1A. Our observations are consistent with the genotype-phenotype correlation studies suggesting that mutations in the pore-forming loop of SCN1A can lead to a clinically more severe epileptic syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.seizure.2004.12.007 | DOI Listing |
Pediatr Neurol
January 2025
Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. Electronic address:
Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy marked by drug-resistant seizures and profound cognitive and behavioral impairments, with nearly 95% of individuals affected by moderate to severe intellectual disability. This review comprehensively explores the cognitive and behavioral impacts of current treatment options for LGS, including antiseizure medications (ASMs), neuromodulation strategies, the ketogenic diet, and surgical interventions. Given the limited availability of LGS-specific data for several ASMs, the evidence base is supplemented with findings from general epilepsy populations and individuals with epilepsy and intellectual disabilities.
View Article and Find Full Text PDFEpilepsy Behav
January 2025
Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA 02115, USA.
Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, specific electroencephalogram (EEG) patterns, and significant cognitive and behavioral impairments. To date, eight anti-seizure medications (ASMs) have been specifically approved by the U.S.
View Article and Find Full Text PDFFront Pediatr
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Introduction: Infantile Epileptic Spasms Syndrome (IESS) typically has a profound impact on the neurodevelopment of patients. The study on IESS indicates possible geographical variation in etiology and a lack of data from China. Our study intends to summarize the etiology of IESS and analyze its characteristics.
View Article and Find Full Text PDFEpilepsy Res
January 2025
Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:
Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!