To initiate a molecular dissection into the mechanism by which purine transport is up-regulated in Crithidia, genes encoding nucleoside transporters from Crithidia fasciculata were cloned and functionally characterized. Sequence analysis revealed CfNT1 and CfNT2 to be members of the equilibrative nucleoside transporter family, and the genes isolated encompassed polypeptides of 497 and 502 amino acids, respectively, each with 11 predicted membrane-spanning domains. Heterologous expression of CfNT1 cRNA in Xenopus laevis oocytes or CfNT2 in nucleoside transport-deficient Leishmania donovani demonstrated that CfNT1 is a novel high affinity adenosine transporter that also recognizes inosine, hypoxanthine, and pyrimidine nucleosides, while CfNT2 is a high affinity permease specific for inosine and guanosine. Southern blot analysis revealed that CfNT2 is present as a single copy within the C. fasciculata genome. Starvation of parasites for purines increased CfNT2 transport activity by an order of magnitude, although Northern blot analysis indicated CfNT2 transcript levels increased by <2-fold. These data imply that this metabolic adaptation can mainly be ascribed to post-transcriptional events. Conversely, Southern analysis of CfNT1 suggests that it is a member of a highly homologous multi-copy gene family, indicating that adenosine transport by C. fasciculata is more complex than previously thought.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbiopara.2004.11.018DOI Listing

Publication Analysis

Top Keywords

nucleoside transporters
8
transporters crithidia
8
crithidia fasciculata
8
analysis revealed
8
high affinity
8
blot analysis
8
cfnt2
6
identification characterization
4
characterization purine
4
nucleoside
4

Similar Publications

RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis.

View Article and Find Full Text PDF

Pediatric intensive care patients are particularly susceptible to severe bacterial infections because of ineffective neutrophil responses. The reasons why neutrophils of newborns are less responsive than those of adults are not clear. Because adenosine triphosphate (ATP) and adenosine (ADO) tightly regulate neutrophils, we studied whether the ATP and ADO levels in the blood of newborn mice could impair the function of their neutrophils.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.

Chin J Integr Med

January 2025

Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.

Objective: To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.

Methods: Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!