Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2004.07.014 | DOI Listing |
Environ Toxicol
January 2025
Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
Roundup is one of the most widely used glyphosate-based harmful herbicides in the United States as well as globally, which poses a severe risk for terrestrial and aquatic organisms. In order to identify the detrimental effects of Roundup exposure in aquatic organisms, we investigated the environmentally relevant concentrations of Roundup exposure (low dose: 0.5 μg/L and high dose: 5.
View Article and Find Full Text PDFToxics
December 2024
Tropical Herpetology Lab, Graduate Program in Zoology, Department of Biological Sciences, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil.
Brazil is one of the largest consumers of herbicides in the world, and glyphosate-based herbicides (e.g., Roundup) are commonly applied in cropland.
View Article and Find Full Text PDFCureus
November 2024
Genotoxicology Laboratory, Universidad Autónoma de Occidente, Los Mochis, MEX.
Introduction: Extensive agricultural activity results in significant exposure to pesticides, particularly glyphosate, which has been linked to immunological disorders, including apoptosis and inflammation. , a species from the Bromeliaceaefamily native to Mexico, is traditionally used in folk medicine for its medicinal properties, including anti-inflammatory effects. This research aimed to evaluate the protective effects of extract on human peripheral blood mononuclear cells (PBMCs) exposed to Faena®, a commercially available glyphosate-based herbicide.
View Article and Find Full Text PDFADMET DMPK
December 2024
Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.
Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.
Environ Sci Pollut Res Int
January 2025
Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.
Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!