Duchenne muscular dystrophy (DMD) is caused by mutation in the 2.4-Mb dystrophin (DMD) gene . This gene encodes a number of tissue-specific isoforms of dystrophin generated by transcription from at least seven promoters and also by alternative splicing. We deleted entire genomic region of the DMD gene on mouse chromosome X using a Cre-loxP recombination system. Introduction of a loxP site in dystrophin's first and last exon by homologous recombination in mouse embryonic stem (ES) cells generated "DMD-floxed" (flanked by loxP sites) ES cells, which we subjected to Cre-mediated excision leading to establishment of "DMD-null" ES cell lines. The DMD-null mice produced from the DMD-null ES cells were viable but displayed severe muscular hypertrophy and dystrophy. In addition to the muscular impairment, the DMD-null mouse exhibited some behavioral abnormality and male sterility. The DMD-floxed mice produced from the DMD-floxed ES cells were viable, phenotypically normal, and were born with the expected Mendelian frequency, despite the absence of brain (cortical)-type dystrophin (Dp427c) expression. Since production of multiple dystrophin isoforms due to alternative splicing or exon skipping is totally prevented in the DMD-null mouse, these new mutants will provide an improved model system for functional studies of dystrophin and its isoforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.12.191DOI Listing

Publication Analysis

Top Keywords

duchenne muscular
8
muscular dystrophy
8
cre-loxp recombination
8
recombination system
8
dmd gene
8
alternative splicing
8
mice produced
8
cells viable
8
dmd-null mouse
8
dystrophin isoforms
8

Similar Publications

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Cardio-metabolic and cytoskeletal proteomic signatures differentiate stress hypersensitivity in dystrophin-deficient mdx mice.

J Proteomics

December 2024

School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:

Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.

View Article and Find Full Text PDF

Non-invasive pressure-volume loop derived temporal elastance, contractility, and efficiency indices for assessing Duchenne muscular dystrophy patients.

Heart Vessels

December 2024

Department of Biomedical Engineering, Veterans Affairs Medical Center, University of Cincinnati, Rhodes Hall 593, 2851 Woodside Drive, Cincinnati, OH, 45219, USA.

Ejection fraction is commonly used to assess Duchenne muscular dystrophy-associated cardiomyopathy (DMDAC), but it may remain normal (wrongly) despite significant myocardial dysfunction in patients. Therefore, better indicators of myocardial dysfunction are needed for longitudinal (with time) assessment and treatment of DMDAC patients. This study evaluates non-invasive LV PV loop-derived elastance, contractility and efficiency in relation to EF for patients developing DMDAC.

View Article and Find Full Text PDF

The Potential of Targeting APE1/Ref-1 as a Therapeutic Intervention for Duchenne Muscular Dystrophy.

Antioxid Redox Signal

December 2024

Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia.

Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!