Cortical neuroplastic changes to painful colon stimulation in patients with irritable bowel syndrome.

Neurosci Lett

Center for Visceral Biomechanics and Pain, Department of Medical Gastroenterology, Aalborg University Hospital, 9000 Aalborg, Denmark.

Published: March 2005

The aim of this study was to model the cerebral generators following painful electrical stimulation of the sigmoid colon in 10 healthy controls and 10 patients with visceral pain due to the irritable bowel syndrome. The evoked brain potentials to 30 painful electrical stimuli from the sigmoid colon were recorded from 31 surface electrodes and subjected to electrical dipole source modelling. Two dipoles in the bilateral insular cortex, one dipole in the anterior cingulate gyrus and two dipoles in the bilateral second somatosensory area were found. The anterior cingulate dipole showed a more posterior position in patients than in control subjects. This finding suggests that the cortical representation of painful stimuli can be modified in presence of chronic visceral pain and that this change involves the anterior cingulate gyrus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2004.11.011DOI Listing

Publication Analysis

Top Keywords

anterior cingulate
12
irritable bowel
8
bowel syndrome
8
painful electrical
8
sigmoid colon
8
visceral pain
8
dipoles bilateral
8
cingulate gyrus
8
cortical neuroplastic
4
neuroplastic changes
4

Similar Publications

Application of elastic net for clinical outcome prediction and classification in progressive supranuclear palsy: A multicenter cohort study.

Parkinsonism Relat Disord

January 2025

Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea. Electronic address:

Background: Previous studies have used machine learning to identify clinically relevant atrophic regions in progressive supranuclear palsy (PSP). This study applied Elastic Net (EN) in PSP to uncover key atrophic patterns, offering a novel approach to understanding its pathology.

Methods: This study included baseline data from 74 patients with PSP enrolled in the Study of Comprehensive ANd multimodal marker-based cohort of PSP (SCAN-PSP, NCT05579301) in Seoul between January 2022 and August 2023.

View Article and Find Full Text PDF

Hippocampal DNA methylation promotes contextual fear memory persistence by facilitating systems consolidation and cortical engram stabilization.

Biol Psychiatry

January 2025

Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany. Electronic address:

Background: Long-term fear memory storage involves gradual reorganization of supporting brain regions over time, a process termed systems consolidation. Memories initially rely on the hippocampus but gradually shift dependence to the neocortex. Although hippocampal activity drives this transfer, the molecular basis of systems consolidation is largely unknown.

View Article and Find Full Text PDF

This study investigates post-stroke cognitive impairment (PSCI) by utilizing spectral dynamic causal modeling (spDCM) to examine changes in effective connectivity (EC) within the default mode, executive control, dorsal attention, and salience networks. Forty-one PSCI patients and 41 demographically matched healthy controls underwent 3D-T1WI and resting-state functional magnetic resonance imaging on a 3.0T MRI.

View Article and Find Full Text PDF

Introduction: Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!