PET imaging of cellular proliferation.

Radiol Clin North Am

Division of Nuclear Medicine, Department of Radiology, University of Washington, 1959 Northeast Pacific Street, Room NN203, Box 356113, Seattle, WA 98195, USA.

Published: January 2005

PET cellular proliferation imaging has its roots in a long history of in vitro cellular proliferation studies to characterize cancer and in the understanding of the biology of thymidine incorporation into DNA gained from these studies. PET imaging represents the logical translation of the in vitro work to measure in vivo tumor proliferation. Preclinical studies of [11C]-thymidine and other PET-labeled thymidine analogues set the stage for early clinical studies that provided very promising results. Recent progress in the application of [18F]-FLT, a clinically practical PET thymidine analogue, to patient studies sets the next stage for clinical PET cellular proliferation imaging. Further mechanistic studies of the imaging agents and well-designed clinical trials will be important in moving PET proliferation imaging into what is likely to be a significant role in the care of cancer patients by providing a quantitative measure of tumor response to cytotoxic or cytostatic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rcl.2004.09.005DOI Listing

Publication Analysis

Top Keywords

cellular proliferation
16
proliferation imaging
12
pet imaging
8
pet cellular
8
pet
6
proliferation
6
studies
6
imaging
5
cellular
4
imaging cellular
4

Similar Publications

Metal ions are indispensable to life, as they can serve as essential enzyme cofactors to drive fundamental biochemical reactions, yet paradoxically, excess is highly toxic. Higher-order cells have evolved functionally distinct organelles that separate and coordinate sophisticated biochemical processes to maintain cellular homeostasis upon metal ion stimuli. Here, we uncover the remodeling of subcellular architecture and organellar interactome in yeast initiated by several metal ion stimulations, relying on near-native three-dimensional imaging, cryo-soft X-ray tomography.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.

Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!