The responses of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruits to post-harvest treatment with 1-MCP were investigated. The maturity stage at which 1-MCP application is most effective in delaying the ripening process was determined, and then the effects of different concentrations (0, 0.035, 0.07 and 0.11 microL/L) of 1-MCP on ethylene production, fruit softening, chlorophyll, lycopene and carotenoids contents of mature green (MG) cherry tomato fruits were assessed. 1-MCP at 0.07 and 0.11 microL/L reduced fruit C(2)H(4) production, delayed the C(2)H(4) peak at ambient temperature. Although 1-MCP at 0.035 microL/L was effective in retarding fruit ripening, it did not suppress endogenous ethylene production. Fruit softening was suppressed by 1-MCP, but its initiation was not affected by 1-MCP. The rate of chlorophyll degradation and its pattern of change with time, and the initiation of lycopene biosynthesis as well as its accumulation were all affected by 1-MCP, but only the accumulation of carotenoids was suppressed. Accumulation of lycopene and carotenoids was almost permanently hampered by 1-MCP at 0.07 microL/L or higher concentrations, and fruit color could not reach the control level even 2 weeks after 1-MCP treatment, indicating the close association of the metabolism of these pigments with ethylene perception. Since the concentration of 0.11 microL/L of 1-MCP was so high that it did not elicit additional response very much than 0.07 microL/L, these concentrations were considered to be practically effective concentrations for cherry tomato at MG stage. The effective 1-MCP concentrations might provide a useful reference to the levels of ethylene receptors as well as ethylene sensitivity in a specific fruit at given development stage.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
Advance Material Manufacturing Lab, Department of Mechanical Engineering, Korea University of Education and Technology, KOREATECH, Republic of Korea. Electronic address:
Coated paper with bio-based components has sparked attention as a food packaging alternative to plastic. This study focusses on development of environmentally friendly packaging solution by electrospraying shellac over paper's surface. The goal of the study is to reduce the time of fabrication, by optimising the process parameters, concentration; 20, 30, and 40%w/v, flow rate; 10, 20, and 30 ml/h, and coating time; 100, 200, and 300 s (Concentration (% w/v))/ Flow rate (ml/h)/ time (sec)), in order to get better GSM (grams per square meter), COBB (grams of water absorbed per square meter), KIT (oil resistance ability), and WVTR (water vapor transmission rate).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil. Electronic address:
The growing demand for sustainable solutions in agriculture, driven by global population growth and increasing soil degradation, has intensified the search for sustainable soil conditioners. This study investigated the impact of adding nanoclay (NC) and nano lignin (NL) to thermoplastic starch (TPS) on its physical, chemical, and thermal properties, its effectiveness as a soil conditioner, and its resistance to UV-C degradation. TPS nanocomposites were prepared with varying NC (3 %, 5 %, 7 %) and NL (0.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China. Electronic address:
This work pioneered an innovative visible light-powered, self-cascading peroxide antimicrobial packaging system (RPFe-CS), featuring a photodynamic enhancement effect achieved through the demand-oriented design of riboflavin sodium phosphate and Fe coordination complexes (RPFe) fillers with photodynamic and peroxidase activities, and the ingenious selection of slightly acidic chitosan (CS) film matrix. In this system, the photo-responsive properties of RPFe particles not only generate the •O, •OH, and O required for photodynamic sterilization, but also the produced HO serves as a necessary substrate for peroxidase to exert its bactericidal effect, endowing the packaging system with a "self-production and self-marketing" cascade process. The RPFe-CS film achieved efficient eradication to bacteria and fungi reaching up to 99.
View Article and Find Full Text PDFFoods
December 2024
College of Information Science & Technology, Hebei Agricultural University, Baoding 071001, China.
This study introduces a non-destructive, quantitative method using low-field MRI to assess moisture mobility and content distribution in cherry tomatoes. This study developed an advanced 3D non-local mean denoising model to enhance tissue feature analysis and applied an optimized TransUNet model for structural segmentation, obtaining multi-echo data from six tissue types. The structural T2 relaxation inversion was refined by integrating an ACS-CIPSO algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!