Caveolin-1 in oncogenic transformation, cancer, and metastasis.

Am J Physiol Cell Physiol

Department of Molecular Pharmacology, and The Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.

Published: March 2005

Caveolae are 50- to 100-nm omega-shaped invaginations of the plasma membrane that function as regulators of signal transduction. Caveolins are a class of oligomeric structural proteins that are both necessary and sufficient for caveolae formation. Interestingly, caveolin-1 has been implicated in the pathogenesis of oncogenic cell transformation, tumorigenesis, and metastasis. Here, we review the available experimental evidence (gleaned from cultured cells, animal models, and human tumor samples) that caveolin-1 (Cav-1) functions as a "tumor and/or metastasis modifier gene." Genetic evidence from the study of Cav-1(-/-) null mice and human breast cancer mutations [CAV-1 (P132L)] supports the idea that caveolin-1 normally functions as a negative regulator of cell transformation and mammary tumorigenesis. In contrast, caveolin-1 may function as a tumor promoter in prostate cancers. We discuss possible molecular mechanisms to explain these intriguing, seemingly opposing, findings. More specifically, caveolin-1 phosphorylation (at Tyr14 and Ser80) and mutations (P132L) may override or inactivate the growth inhibitory activity of the caveolin-scaffolding domain (residues 82-101).

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00458.2004DOI Listing

Publication Analysis

Top Keywords

cell transformation
8
caveolin-1
6
caveolin-1 oncogenic
4
oncogenic transformation
4
transformation cancer
4
cancer metastasis
4
metastasis caveolae
4
caveolae 50-
4
50- 100-nm
4
100-nm omega-shaped
4

Similar Publications

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Background: Malignant transformation (MT) of mature cystic teratoma (MCT) has a poor prognosis, especially in advanced cases. Concurrent chemoradiotherapy (CCRT) has an inhibitory effect on MT.

Case Summary: Herein, we present a case in which CCRT had a reduction effect preoperatively.

View Article and Find Full Text PDF

Bioactive Materials Facilitate the Restoration of Neurological Function Post Cerebral Ischemic Stroke.

Int J Nanomedicine

December 2024

Department of Neurology, Neurology Specialist Hospital, The First Hospital of Jilin University, Jilin University, Changchun, People's Republic of China.

The recovery process following ischemic stroke is a complex undertaking involving intricate cellular and molecular interactions. Cellular dysfunction or aberrant pathways can lead to complications such as brain edema, hemorrhagic transformation, and glial scar hyperplasia, hindering angiogenesis and nerve regeneration. These abnormalities may contribute to long-term disability post-stroke, imposing significant burdens on both families and society.

View Article and Find Full Text PDF

Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions.

View Article and Find Full Text PDF

Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!