The transport barrier in intraperitoneal therapy.

Am J Physiol Renal Physiol

Dept. of Medicine/Nephrology, Univ. of Mississippi Medical Ctr., 2500 North State St., Jackson, MS 39216-4505, USA.

Published: March 2005

The peritoneal cavity is important in clinical medicine because of its use as a portal of entry for drugs utilized in regional chemotherapy and as a means of dialysis for anephric patients. The barrier between the therapeutic solution in the cavity and the plasma does not correspond to the classic semipermeable membrane but instead is a complex structure of cells, extracellular matrix, and blood microvessels in the surrounding tissue. New research on the nature of the capillary barrier and on the orderly array of extracellular matrix molecules has provided insights into the physiological basis of osmosis and the alterations in transport that result from infusion of large volumes of fluid. The anatomic peritoneum is highly permeable to water, small solutes, and proteins and therefore is not a physical barrier. However, the cells of the mesothelium play an essential role in the immune response in the cavity and produce cytokines and chemokines in response to contact with noncompatible solutions. The process of inflammation, which depends on the interaction of mesothelial, interstitial, and endothelial cells, ultimately leads to angiogenesis and fibrosis and the functional alteration of the barrier. New animal models, such as the transgenic mouse, will accelerate the discovery of methods to preserve the functional peritoneal barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00313.2004DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
8
barrier
5
transport barrier
4
barrier intraperitoneal
4
intraperitoneal therapy
4
therapy peritoneal
4
peritoneal cavity
4
cavity clinical
4
clinical medicine
4
medicine portal
4

Similar Publications

Aim: This study was conducted to evaluate the in vitro effects of hydroxychloroquine (HCQ) on histone deacetylase (HDAC) enzyme activity and interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) expression. HDAC enzyme activity and the expression of inflammation markers were tested, with the presence of the HDAC inhibitor valproic acid, in human primary cell cultures prepared from two different tissues.

Material And Methods: Primary cell cultures were prepared.

View Article and Find Full Text PDF

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

Background: Polydatin (PD), also known as tiger cane glycoside, is a natural compound extracted from the Japanese knotweed plant, which is often referred to as white resveratrol. It exhibits anti-inflammatory, antioxidant, and anti-apoptotic effects in the treatment of various diseases. However, the potential molecular mechanisms of PD in osteoarthritis have not been clearly elucidated.

View Article and Find Full Text PDF

Advanced 3D bioprinted liver models with human-induced hepatocytes for personalized toxicity screening.

J Tissue Eng

January 2025

Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Institutes of Health Science, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

The development of advanced models for assessing liver toxicity and drug responses is crucial for personalized medicine and preclinical drug development. 3D bioprinting technology provides opportunities to create human liver models that are suitable for conducting high-throughput screening for liver toxicity. In this study, we fabricated a humanized liver model using human-induced hepatocytes (hiHeps) derived from human fibroblasts via a rapid and efficient reprogramming process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!