Low-temperature growth of Shewanella oneidensis MR-1.

Appl Environ Microbiol

Department of Biological Sciences, 3651 Trousdale Pkwy., AHF 107, University of Southern California, Los Angeles, CA 90089-0371, USA.

Published: February 2005

AI Article Synopsis

  • Shewanella oneidensis MR-1 can thrive in a variety of temperatures, with optimal growth at around 35°C, but can also grow in near-freezing conditions.
  • At room temperature (22°C), MR-1 has a doubling time of about 40 minutes, but this significantly increases to about 67 hours when the temperature drops to 3°C, leading to a long lag phase of over 100 hours.
  • Cold-grown MR-1 cells exhibit unique characteristics such as long motile filaments, different protein production, changes in cellular lipid patterns, and the appearance of pilus-like structures when transitioning back to warmer temperatures.

Article Abstract

Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of approximately 35 degrees C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature ( approximately 22 degrees C) MR-1 grows with a doubling time of about 40 min, but when moved from 22 degrees C to 3 degrees C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of approximately 67 h. In comparison to cells grown at 22 degrees C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22 degrees C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC546687PMC
http://dx.doi.org/10.1128/AEM.71.2.811-816.2005DOI Listing

Publication Analysis

Top Keywords

shewanella oneidensis
8
oneidensis mr-1
8
temperature degrees
8
degrees mr-1
8
doubling time
8
degrees
6
low-temperature growth
4
growth shewanella
4
mr-1
4
mr-1 shewanella
4

Similar Publications

N-Methylation of the peptide backbone confers pharmacologically beneficial characteristics to peptides that include greater membrane permeability and resistance to proteolytic degradation. The borosin family of ribosomally synthesized and post-translationally modified peptides offer a post-translational route to install amide backbone α-N-methylations. Previous work has elucidated the substrate scope and engineering potential of two examples of type I borosins, which feature autocatalytic precursors that encode N-methyltransferases that methylate their own C-termini in trans.

View Article and Find Full Text PDF

Shewanella oneidensis and Methanosarcina barkerii augmentation and conductive material effects on long-term anaerobic digestion performance.

Biotechnol Biofuels Bioprod

January 2025

Environmental Biotechnologies, Institute of Microbiology (IM) DACD Campus Mendrisio, University of Applied Sciences and Arts of Southern Switzerland SUPSI, Via Flora Ruchat-Roncati, 6850, Mendrisio, Switzerland.

This study explores the use of conductive material in scaling up anaerobic digestion for enhanced biogas production. Focusing on Direct Interspecies Electron Transfer (DIET), the research employs a syntrophic DIET-able consortium formed by Shewanella oneidensis and Methanosarcina barkerii in 3.8-L experiments utilizing reticulated vitreous carbon (RVC) as conductive material.

View Article and Find Full Text PDF

In bioelectrochemical systems (BES), biofilm formation and architecture are of crucial importance, especially for flow-through applications. The interface between electroactive microorganisms and the electrode surface plays an important and often limiting role, as the available surface area influences current generation, especially for poor biofilm forming organisms. To overcome the limitation of the available electrode surface, nanoparticles (NPs) with a magnetic iron core and a conductive, hydrophobic carbon shell were used as building blocks to form conductive, magnetic micropillars on the anode surface.

View Article and Find Full Text PDF

Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.

View Article and Find Full Text PDF

Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!